1.二项式定理
二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年期间提出。
该定理给出两个数之和的数次幂的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
二项式定理论述了(a+b)n的展开式。人们只要有初步的代数知识和足够的毅力,便可以得到如下公式, (a+b)2=a2+2ab+b2 (a+b)3=a3+3a2b+3ab2+b3 (a+b)4=a4+4a3b+6a2b2+4ab3+b4 等等。
对于(a+b)12,人们显然希望不必经由(a+b)十几次自乘的冗长计算,就能够发现其展开式中a7b5的系数。早在牛顿出生之前很久,人们便已提出并解决了二项式的展开式问题。
中国数学家杨辉早在13世纪就发现了二项式的秘密,但他的著作直到近代才为欧洲人所知。维埃特在其《分析术引论》前言的命题XI中也同样论证了二项式问题。
但这一伟大发现通常是以布莱兹·帕斯卡的名字命名的。帕斯卡注意到,二项式的系数可以很容易地从我们现在称为“帕斯卡三角”的排列中得到: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 等等 在这个三角形中,每一个新增数字都等于其上左右两个数字之和。
因此,根据帕斯卡三角,下一行的数值为 1 8 28 56 70 56 28 8 1 例如,表值56就等于其上左右两个数字21+35之和。 帕斯卡三角与(a+b)8展开式之间的联系是非常直接的,因为三角形的最后一行数值为我们提供了必要的系数,即 (a+b)8=a8+8a7b+28a6b2+56a5b3 +70a4b4+56a3b5+28a2b6+8ab7+b8 我们只要将三角形的数值再向下延伸几行,就可以得到(a+b)12展开式中a7b5的系数为792。
所以,帕斯卡三角的实用性是非常明显的。 年轻的牛顿经过对二项展开式的研究,发明了一个能够直接导出二项式系数的公式,而不必再繁琐地延伸三角形到所需要的那行了。
并且,他对模式的持续性的固有信念使他认为,能够正确推导出诸如(a+b)2或(a+b)3 这种形式的二项式。 关于分数指数和负数指数问题,在此还需多说一句。
我们知道,在初等 这些关系。 以下所列牛顿的二项展开式公式是他在1676年写给其同时代伟人戈特弗里德·威廉·莱布尼兹的一封信中阐明的(此信经由皇家学会的亨利·奥尔登伯格转交)。
牛顿写道: 项式的“指数是整数还是(比如说)分数,是正数还是负数”的问题。公式中的A、B、C等表示展开式中该字母所在项的前一项。
对于那些见过现代形式的二项展开式的读者来说,牛顿的公式可能显得过于复杂和陌生。但只要仔细研究一下,就可以解决读者的任何疑问。
我们首先来看, 出 也许,这种形式看起来就比较熟悉了。 我们不妨应用牛顿的公式来解一些具体例题。
例如,在展开(1+x)3时, 这恰恰就是帕斯卡三角的非列系数。并且,由于我们的原指数是正整数3,所以,展开式到第四项结束。
但是,当指数是负数时,又有一个完全不同的情况摆在牛顿面前。例如,展开(1+x)-3,根据牛顿公式,我们得到 或简化为 方程右边永远没有终止。
应用负指数定义,这一方程就成为 或其等价方程 牛顿将上式交叉相乘并消去同类项,证实 (1+3x+3x2+x3)(1+3x+6x2-10x3+15x4-……)=1 牛顿用等式右边的无穷级数自乘,也就是求这无穷级数的平方,以检验这一貌似奇特的公式,其结果如下: 所以 这就证实了 与牛顿原推导结果相同。 牛顿写道;“用这一定理进行开方运算非常简便。”
例如,假设我们求 现在,将等式右边的平方根代入前面标有()符号的二项展开式中的前6项,当然,此处要用29替换原公式中的x,因而,我 了前6个常数项。如果我们取二项展开式中更多的项,我们就会得到更加精确的近似值。
并且,我们还可以用同样的方法求出三次根、四次根,等等, 续演算。 别奇怪的。
而真正令人吃惊的是,牛顿的二项式定理精确地告诉我们应该采用哪些分数,而这些分数则是以一种完全机械的方式得出的,无须任何特殊的见解与机巧。这显然是一个求任何次方根的有效而巧妙的方法。
二项式定理是我们即将讨论的伟大定理的两个必要前提之一。另一个前提是牛顿的逆流数,也就是我们今天所说的积分。
但是,对逆流数的详尽说明属于微积分问题,超出了本书的范围。然而,我们可以用牛顿的话来阐述其重要定理,并举一两个例子来加以说明。
牛顿在1669年中撰著的《运用无穷多项方程的分析学》一书中提出了逆流数问题,但这部论著直到1711年才发表。这是牛顿第一次提出逆流数问题,他将他的这部论文交给几个数学同事传阅。
比如,我们知道,艾萨克·巴罗就曾看到过这部论文,他在1669年7月20日给他一个熟人的信里写道:“……我的一个朋友……在这些问题上很有天分,他曾带给我几篇论文。”巴罗或《分析学》一书的任何其他读者遇到的第一个法则如下。
设任意曲线AD的底边为AB,其垂直纵边为BD,设AB=x, BD=y,并设a、b、c等为已知量,m和n为整数。则: 到x点之内的图形的面积。
根据牛顿法则,这一图形的面积为 按照牛顿公式,面积为12x2,对这一结果,可以很容易地用三角形面积公式 牛顿又进一步说明了《分析学》一书的法则2,“如果y值是由几项之和组成的,那么,其面积也同样等于每一。
2.中国古代数学的发展历史的论文
浅谈中国古代数学 作为一个炎黄子孙,龙的传人,我们可以很骄傲的说我们的祖先有很多优秀的,好的东西留给了我们同时也留给了世界,四大发明,影响着整个世界,改变了整个世界。
另外就是今天我们要说的数学,中国古人对数学的研究以及对世界作出的贡献。 在中国明代中叶以前我国的数学一直处于世界的领先地位,这是我们的骄傲,我国古代的许多数学家曾经写下了不少著名的数学著作。
许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。
比如,现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。
最早由于没有印刷术的出现,我们的古人都是用手抄写的方式,把这些数学知识传给下一代的,古代的数学家给已有的算数作出自己的注解,同时提出自己的心得 观点和看法。 大家最熟悉的数学著作就是《九章算术》了,《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。
在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。
现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。然而,直到今天我们都不知道这本著作的具体作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。
《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。
可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。
同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。
然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。直到我国古代的数学家刘徽给《九章算术》作注,才大大弥补了这个缺陷。
刘徽可是咱们山东邹平人哟,刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。《海岛算经》,就是刘徽所著,这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。
这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。
一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。
中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。
宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。
所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。另外,大家都知道《算经十书》,它是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。
十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。
《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行。
3.方程发展史小论文
古代方程发展史
中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3*11*9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。
4.数学,二项式定理
1 X^2的系数=C(3,2)+C(4,2)+。
+C(N,2)=(3*2+4*3+。+N*(N-1))/2 =(3^2+4^2+。
+N^2-3-4-。-N)/2 实际上就是求前N项的平方和与前N项和,再两者相减除以2 前N项和=N*(N+1)/2,本题为(N-2)*(N+3)/2 前N项的平方和=(2N^3+3N^2+N)/6,本题为(2N^3+3N^2+N-30)/6 (2N^3+3N^2+N-30)/6-(N-2)*(N+3)/2=(N^3-N-6)/6 其中的两个重要公式应当牢记,就方便直接使用了! 2 (X+1)^6(AX-3)^2含X^7项的系数=C(6,6)*(-6A)+C(6,5)*(A^2)=36 A^2-A-6=0 A=3,-2。
5.二项式定理有什么具体应用意义
二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用 二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学.求二项式展开式系数的问题,实际上是一种组合数的计算问题.用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”. 【图算】 常数项产生在展开后的第5、6两项.用“错位加法”很容易“加出”杨辉三角形第8行的第5个数.简图如下: 1 4 6 4 1 1 5 10 10 5 1 …… 15 20 15 6 … 1 …… 35 35 21 …… … 70 56 … 图上得到=70,==56. 故求得展开式中常数项为70 – 2*56 = – 42 【点评】 “式算”与“图算”趣遇,各扬所长,各补所短. 杨辉三角形本来就是二项式展开式的算图.对杨辉三角形熟悉的考生,比如他熟悉到了它的第6行: 1,6,15,20,15,6,1 那么他可以心算不动笔,对本题做到一望而答. 杨辉三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果.这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透. 利用二项式推出牛顿切线法开方 公式来源《数学传播》136期 开立方公式:公式来源《数学传播》136期设A = X^3,求X.称为开立方.开立方有一个标准的公式: X(n+1)=Xn+(A/X^2-Xn)1/3 (n,n+1是下角标) 例如,A=5,即求 5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8) 初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以.例如我们取X0 = 1.9按照公式: 第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7. 即5/1.9*1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584*1/3=-0.1716528,1.9+(-0.1716528)=1.7.即取2位数值,即1.7. 第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71. 即5/1.7*1.7=1.73010,1.73-1.7=0.03,0.03*1/3=0.01,1.7+0.01=1.71.取3位数,比前面多取一位数. 第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709. 第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099 这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值 偏小,输出值自动转大.即5=1.7099^3; 当然初始值X0也可以取1.1,1.2,1.3,。
1.8,1.9中的任何一个,都是X1 = 1.7 > .当然,我们在实际中初始值最好采用中间值,即1.5.1.5+(5/1.5²-1.5)1/3=1.7. 如果用这个公式开平方,只需将3改成2,2改成1.即 X(n + 1) = Xn + (A / Xn-Xn)1 / 2. 例如,A=5: 5介于2的平方至3的平方;之间.我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取 中间值2.5.第一步:2.5+(5/2.5-2.5)1/2=2.2; 即5/2.5=2,2-2.5=-0.5,-0.5*1/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2. 第二步:2.2+(5/2.2-2.2)1/2=2.23; 即5/2.2=2.272,2.272-2.2=-0.072,-0.072*1/2=-0.036,2.2+0.036=2.23.取3位数. 第三步:2.23+(5/2.23-2.23)1/2=2.236. 即5/2.23=2.242,2.242-2.23=0.012,0.012*1/2=0.006,2.23+0.006=2.236. 每一步多取一位数.这个方法又叫反馈开方,即使你输入一个错误的数值,也没有关系,输出值会自动调节,接近准确值. A=(X±Y)^n=展开.带入公式就是开方公式.X(n+1)=Xn+(A/X^(k-1)-Xn)1/k=Xn-f(x)/f'(x). f'(x)=kx^(K-1);f(X)=X^K-A. 即牛顿切线法 就是在开方过程中把牛顿二项式定理转换成为牛顿切线法.。
转载请注明出处众文网 » 二项式定理历史毕业论文