1.帮忙找找电力系统谐波的毕业论文
电力系统谐波测量方法综述
/c?m=&p=&user=baidu
2.电网谐波的危害及抑制技术毕业课题
1 谐波的危害 1.1 污染公用电网 如果公用电网的谐波特别严重,则不但使接入该电网的设备(电视机、计算机等)无法正常工作,甚至会造成故障,而且还会造成向公用电网的中性线注入更多电流,造成超载、发热,影响电力正常输送。
详细内容: pany/energy-challenge/smart-grid.page 1.2 影响变压器工作 谐波电流,特别是3次(及其倍数)谐波侵入三角形连接的变压器,会在其绕组中形成环流,使绕组发热。对Y形连接中性线接地系统中,侵入变压器的中性线的3次谐波电流会使中性线发热。
1.3 影响继电保护的可靠性 如果继电保护装置是按基波负序量整定其整定值大小,此时,若谐波干扰叠加到极低的整定值上,则可能会引起负序保护装置的误动作,影响电力系统安全。 1.4 加速金属化膜电容器老化 在电网中金属化膜电容器被大量用于无功补偿或滤波器,而在谐波的长期作用下,金属化膜电容器会加速老化(见表1)。
1.5 增加输电线路功耗 如果电网中含有高次谐波电流,那么,高次谐波电流会使输电线路功耗增加。 如果输电线是电缆线路,与架空线路相比,电缆线路对地电容要大10~20倍,而感抗仅为其1/3~1/2,所以很容易形成谐波谐振,造成绝缘击穿。
1.6 增加旋转电机的损耗 国际上一般认为电动机在正常持续运行条件下,电网中负序电压不超过额定电压的2%,如果电网中谐波电压折算成等值基波负序电压大于这个数值,则附加功耗明显增加。 1.7 影响或干扰测量控制仪器、通讯系统工作 例如,直流输电中,直流换流站换相时会产生3~10kHz高频噪声,会干扰电力载波通信的正常工作。
2 谐波抑制技术 2.1 整机电源需留有较大贮备量 为了使测量、控制装置能满足负载较大变化范围,因此在设计整机电源时,可给予较大贮备量,一般选取0.5~1倍余量; 2.2 对干扰大的设备与测控装置采用不同相线供电 因为测量、控制装置的许多干扰是由电源线窜入的,因此在规划供电线路时,对干扰大的设备与测控装置采用不同相线供电,见图6; 2.3 将测量、控制装置的供电与动力装置的供电分开 将测量、控制装置的供电与动力装置的供电分开,见图7。因为动力装置的负荷变动大,测量、控制、微机及电视机的负荷小,动力装置产生的干扰大,供电电源分开后,测量、控制、微机及电视机的电源与动力装置的电源相互隔离,可以大大减少通过电源线的干扰。
2.4 其余抑制高次谐波的技术 2.4.1 开关电源干扰的抑制技术 一般采用的办法是:电源滤波、屏蔽及减少开关电源本身干扰能量。 采用电源滤波器。
如图8,其中C1、C2具有抑制串模干扰,L1、L2可以抑制共模干扰,而C4、C3可以抑制串共模干扰。电源滤波器可以阻止电网中的干扰进入开关电源,也可以阻止开关电源的干扰进入电网。
屏蔽技术可以有效地防止向外辐射干扰。 减少开关电源本身干扰,利用改善线圈绕制工艺,确保绕组之间紧密耦合,以减少变压器漏感。
还可以在高频整流二极管上串入可饱和磁芯线圈,利用流过反向电流时,因磁芯不饱和而产生的较大电势阻止反向电流上升。 2.4.2 变压器空载合闸涌流抑止方法 根据方程(1),如果合闸时,α=(即U1=U1m便合闸),则: Φ1=-Φmcos(ωt+)=Φmsinωt (4) 没有暂态分量,合闸后磁通立即进入稳定状态,理论上可以避免冲击涌流过程。
2.4.3 抑制单相电容器组开断瞬态过电压方法 如果采用选相断路器投切电容器,则可以消除或大大降低投切电容器产生的瞬态过电压,从而使接在母线上的电力电子调速系统可以稳定地工作,接在母线上的其余设备也可不受过电压干扰的影响。 2.4.4 抑制电压互感器铁磁谐振方法 其方法是要使它脱离谐振区,图9示出了电压互感器的伏安特性U=f(IL),系统对地电容的伏安特性U=f(IC)和合成伏安特性U=f(IL-IC),在oa区间,合成电流呈容性,合成电流随电压上升而增加,在ab区间铁芯饱和导致XL电抗减少(电感电流非线性急剧增长),最后使合成电流仍为容性,合成电流随电压上升而减少,所以ab区间是不稳定区间,在b点合成电流为零,这时XL=XC(IC=IL),发生并联谐振。
采用中性点不接地的电压互感器或采用电容分压器可以从根本上避免铁磁谐振。 2.4.5 抑止整流和逆变产生的谐波 (1)在变频器前加装电源滤波器。
一种成本比较低的方法是在电源侧加装三只680μf250VAC的电容,(分别接在L-N,L-grond,N-grond上)这种方法可使电磁干扰电流降至原来的1/10,效果较明显; (2)变频器的电源电缆采用屏蔽电缆,屏蔽电缆穿铁管并接地,输出电缆也穿铁管并接地,屏蔽层应在接变频器处和电机处两端都接地。 2.4.6 抑止电弧炉运行时的干扰 (1)在合适地段加入电容补偿装置,补偿无功波动; (2)可以重新安排供电系统。
3.配电网络中的谐波污染问题的研究
为解决供电紧张,一方面要建设许多新的电厂和输电线路,另一方面要高效利用现有的电力资源,减少电力损耗。
谐波是导致电力损耗增加,供电质量下降的重要因素。 发展带来供电紧张。
降低变压器有效出力, 谐波会大大增加电力变压器的铜损和铁损。谐波导致的噪声,会使变电所的噪声污染指数超标,影响工作人员的身心健康。
对于电力电容器,谐波会导致端电压升高,损耗加大,电容器发热,加速老化,从而缩短使用寿命。 1 电力系统谐波的基本特性和测量其频率是基波频率的整数倍数。
理论上看, 谐波是一个周期电气量的正弦波分量。非线性负荷是配电网谐波的主要发生因素。
非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。
还可能发生低于基频的次谐波, 非线性负荷除了发生基频整次谐波外。或高于基波的非整数倍谐波。
电力系统中泛起系统短路、开路等事故,而导致系统进入暂态过程引起的谐波,将不归属谐波治理的范畴。要治理谐波改善供电品质,需要了解谐波类型。
谐波按其性质和波动的快慢可分成四类:准稳态谐波、稳定谐波、快速变化的谐波和间谐波四类。因其多样性和随机性,实际工作中,要精确评估谐波量值非常困难,所以在IEC 6100-4-7尺度中对前三类谐波进行了规定,推荐采用数理统计的方法对谐波进行丈量。
通常采用谐波测试仪来监测和分析谐波。一般来说, 实际工作中。
将用户接入公用电网的公共连接点作为谐波监测点,丈量该点的电压和注入公共电网的电流后,通过对电压和电流的分析,取得谐波丈量资料 更多参考请访问三七毕业设计论文资料网 专业的计算机毕业设计网站 希望能帮到你的忙。
4.配电网络中的谐波污染问题的研究
为解决供电紧张,一方面要建设许多新的电厂和输电线路,另一方面要高效利用现有的电力资源,减少电力损耗。谐波是导致电力损耗增加,供电质量下降的重要因素。 发展带来供电紧张。降低变压器有效出力, 谐波会大大增加电力变压器的铜损和铁损。谐波导致的噪声,会使变电所的噪声污染指数超标,影响工作人员的身心健康。对于电力电容器,谐波会导致端电压升高,损耗加大,电容器发热,加速老化,从而缩短使用寿命。
1 电力系统谐波的基本特性和测量
其频率是基波频率的整数倍数。理论上看, 谐波是一个周期电气量的正弦波分量。非线性负荷是配电网谐波的主要发生因素。非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。
还可能发生低于基频的次谐波, 非线性负荷除了发生基频整次谐波外。或高于基波的非整数倍谐波。电力系统中泛起系统短路、开路等事故,而导致系统进入暂态过程引起的谐波,将不归属谐波治理的范畴。要治理谐波改善供电品质,需要了解谐波类型。谐波按其性质和波动的快慢可分成四类:准稳态谐波、稳定谐波、快速变化的谐波和间谐波四类。因其多样性和随机性,实际工作中,要精确评估谐波量值非常困难,所以在IEC 6100-4-7尺度中对前三类谐波进行了规定,推荐采用数理统计的方法对谐波进行丈量。
通常采用谐波测试仪来监测和分析谐波。一般来说, 实际工作中。将用户接入公用电网的公共连接点作为谐波监测点,丈量该点的电压和注入公共电网的电流后,通过对电压和电流的分析,取得谐波丈量资料 更多参考请访问三七毕业设计论文资料网 专业的计算机毕业设计网站 希望能帮到你的忙。
5.毕业设计:基于虚拟仪器技术的电力谐波分析仪的设计
本设计要完成的功能有:
(1)通用信号发生器的实现,它能够产生任意波形或信号,最多可以产生含有十二个谐波分量的波;
(2)电力谐波测试分析仪的实现,包括的主要分析有:时域分析、频域分析、测量分析、窗函数;
通过对采集到的信号有谐波、噪声谐波等实际情况,分析了电力系统谐波产生的主要原因、谐波源以及谐波对电力系统和用电设备的危害,提高人们对电力系统谐波危害的认识,加深人们对电力系统谐波产生原因的了解,找出影响电力系统及用电设备安全运行的因素。
在综合分析各种常用的谐波测试技术的原理、特点及适用范围的基础上,建立了一套基于快速傅立叶变换原理的电力谐波测试技术,分析了测试机理,进行了谐波测量与电能质量分析和综合评价。
通过对谐波测试装置的构成、控制原理、技术实现和控制策略等方面的深入研究,探索一种经济、有效的电力系统谐波测试分析机理和治理技术,并对该技术应用效果进行了试验分析,寻求到了适合信号处理系统的谐波综合治理方案。该方法有效地减少了干扰性负荷的影响,提高了电力系统的供电质量,减少了系统的运行故障,减少了谐波对电力系统的影响,保障了电网和用户的安全,确保了生产正常进行,降低了企业的经济损失。
6.试述电力系统谐波产生的原因及其影响
谐波产生的原因:高次谐波产生的根本原因是由于电力系统中某些设备和负荷的非线性特性,即所加的电压与产生的电流不成线性(正比)关系而造成的波形畸变。
当电力系统向非线性设备及负荷供电时,这些设备或负荷在传递(如变压器)、变换(如交直流换流器)、吸收(如电弧炉)系统发电机所供给的基波能量的同时,又把部分基波能量转换为谐波能量,向系统倒送大量的高次谐波,使电力系统的正弦波形畸变,电能质量降低。当前,电力系统的谐波源主要有三大类。
1)、铁磁饱和型:各种铁芯设备,如变压器、电抗器等,其铁磁饱和特性。
7.电力系统谐波产生的原因及影响
呵呵
什么是谐波?简单地说,电力系统把50赫兹的电压或者电流波,叫做基波,不是50Hz的电压、电流就是谐波。
谐波产生的原因:
电网中有一些特殊的用电设备,比如:大功率整流器、中频炉、变频器、劣质节能灯,等等,这类设备的工作电流与电压不成正比,我们叫它们为非线性的负载。
发电机发出的电能,本来是比较规整的50Hz的频率,但是如果遇到非线性设备在电网中,这一些设备工作时,就会产生谐波。比如单相整流器,就把50Hz的基波,“整”成具有100Hz、150Hz、200Hz……等等成分的信号,就出现了谐波。这种会产生谐波的设备,我们常常叫它“谐波源”。
谐波的次数:谐波的频率与50Hz的比值,就是谐波的次数,比如:150Hz的,叫3次谐波,350Hz的,叫7次谐波,等等。
电网中,奇次谐波较常见,最多的是3、5、7、9次。偶次谐波很少见。由于谐波次数越高(频率越高),谐波的衰减就越快,所以21次以上的谐波,在电网中很少,因此谐波的监测与治理,都不超过21次。
谐波的危害:
谐波是电力系统中的一种能量污染,会导致电机发热产生故障、电力保护误动作、电脑通讯设备受干扰、……等等,其危害是很大的。
但是要消除非线性设备的谐波,需要很大的成本。签于国家目前没有法律处罚,所以绝大多数设备生产厂家都听之任之,就像排放废水废气一样,国家不罚就不去治理。
【提高】“谐波”一词起源于声学,信号理论对谐波的定义是:一个任意的周期信号,可以分解成若干个单一频率的正弦波的叠加,这些正弦波的频率是按自然数列排列的,比如是:f、2f、3f、……Nf,等等。也就是说一系列频率是f、2f、3f、……Nf的单一频率的正弦波,可以合成一个任意的周期波形。这些正弦波中,频率最低的一个正弦波,叫基波,f就是基频,频率为2f、3f、4f、5f……的信号,就叫谐波。
转载请注明出处众文网 » 电力系统的谐波毕业论文