1.数学在经济中的应用的论文
数学是科学之王。
数字化时代的任何学科显然都已经离不开数学。离开数学的,比如诗歌,比如京戏,如果还摈弃数学的精细,还敢藐视数字化的传媒,则必定为时代所抛弃。
唯独中国的经济学,在最需要数学扶助的时候,却在以大无畏的精神藐视着数学。不管是宏观经济学、微观经济学,还是我们曾奉为经典的政治经济学,都以极端自负的姿态不屑于带数学这个纯自然科学的小兄弟玩儿,最多在需要点缀的时候,捎上它的一点儿“概算”,就算对这小兄弟够重视的了——科学之王?在我们的经济学里公民都算不上! 中国经济,不管宏观还是微观都出了问题,这是人们无法否认的。
制度上的原因人们尽可以仁者见仁智者见智。“似乎”是在制度之外,笔者却发现了一个数学上的原因。
那就是中国经济学在不经意之时捎带着用一下的数学“概算”。这一“概算”,就“概算”出了中国经济的大毛病。
先看宏观经济中“概算”搞出来的漏子。 鼓励生育的人口政策可以认定是一项经济政策,其经济上的动机是建立在发展生产“人多力量大”的数学概算基础上的。
其数学含义是:多一亿人口的物质财富生产≥多一亿人口的物质财富消耗。时髦的口号是:人少好吃饭,人多好干活。
劳动力的物质财富生产扣除劳动力的物质财富消耗的剩余,就是鼓励人口政策的经济目的。这样的概算在今天看起来粗鄙得近于野蛮——即便科学技术高度发展对财富生产方式的改变令闭塞社会的管理者始料不及这一点可以理解,有限土地人口承载力、不可再生资源的消耗极限、社会管理成本的高比例付出、财富产出的边际收益递减等等基本数学因数都不能纳入国民经济规划视野的话,数学在经济学中的位置则肯定不如贵族豪门里的粗使丫头。
计划经济曾是我们社会为人类探索的一条大胆的经济发展模式。它失败了。
但它的对手却在令人眼花缭乱的市场经济里把计划用到了极致。难道计划对于市场,对于经济真的是那么无能为力,那么荒唐吗?我们的对手都会告诉我们:不是!计划是智慧生命的生存方式。
计划是对生存方式的算计和筹划。日本人对自己海岸线以内的海底资源珍藏不用是算计,美国人的“星球大战”是筹划;世界商业巨头数亿美元的广告营销投入是精心算计,跨国公司的中国攻略是跨世纪的大筹划……市场经济里几乎每一个智慧生命的每一个动作都自然地演绎着精致的数学逻辑。
算计和筹划都离不开数学。我们的计划经济却抛弃了数学,因而它实际上根本谈不上是计划,所以它失败了。
翻看一下我们那时的年度计划、十年规划,我们会看到,我们的计划体制里没有数学的位置,连初等数学的运用都是随心所欲地选取几个为我所用的要素的简单累加——我们的5年计划在计算总产值、GDP的同时,几乎从不计算投入与消耗;我们在劳动者的报酬中强制提留福利事业费,连劳动者维持生命需要几分钱的油、盐、酱、醋都计算的分文不余,却从不计算每一位劳动者在离开这个世界之前能否住上一天公有制配给的房子,也几乎不去计算老龄化社会,对养老金需求的增幅;我们的市政建设没有工程师或规划师去计算基础管道设施的铺设是一次性开沟铺设最经济,还是分八、九次开膛破肚更有利,却有人计算出八、九次开膛破肚的GDP值要大于一次性马到功成;我们的证券市场设计,能够设计出一个让体制内企业家取之不尽的再生金矿,却计算不出融资额、股票市值与上市公司实际财富产出值之间的倍数关系……几乎全都是初等数学的层次,我们的计划体制却从来都懒得应用。更不要提数学矩阵和模型,那不过是失落的学者在自己书房里摆弄的智迷游戏。
庞然大物的国家,连经济数据的简单相加都嫌费事,立体结构的国民经济综合规划岂能不粗糙?经济发展不平衡,越来越不平衡;社会发展不和谐,越来越不和谐。什么原因?简单地归结为计划经济的失灵不解决具体问题。
我们是在与科学之王叫板!我们在不自量力地鄙视数学!这才是我们社会灵魂深处的症结。 再看一看微观经济中人们又是如何应用数学。
微观的企业经营领域本应是精细数学的用武之地,而我们的企业,不是新兴的民企缺少数学应用能力,就是老牌国企在篡改着简单的政治经济学数学公式。 W=C+V+M 这个简单的商品价值构成公式相信越是老一辈的革命者越是记忆犹新。
然而不管是30年的纯计划经济,还是20多年的开放搞活经济,我们却从没有正确应用过这个公式。 纯计划经济时期,我们把体现劳动者劳动力价值的“V”这部分价值分成了两个子项“V1”和“V2”。
“V1”作为劳动力价值的一部分付给了劳动者用于劳动力的简单再生产——“糊口”。“V2”本应是劳动力价值的更大部分(劳动者用于住房、教育、医疗、养老和子女抚养),却人为地和“M”这部分劳动者为社会增值的价值混加在了一起,用于了扩大再生产和支持庞大计划管理机器的运营。
这个简单的政治经济学商品价值构成公式在计划分配体系中被篡改成了—— W=C+V1+(V2+M) “V1”维持着劳动力简单再生产。“V2”作为劳动者总体价值的一个重要部分,实际应用上却被当成了“M”。
劳动力的价值发生了割裂,劳动者本身的发展就无法。
2.数学在经济中的应用的论文数学的哪些知识运用在经济上
数学具有高度的抽象性、严密的逻辑性和广泛的应用性的特点。 而经济学是研究社会资源配置及社会经济关系的一门学科。 从经济学与数学的发展历史可以获知, 经济学与数学是密不可分息息相关的, 数学能为经济学提供特有的、严密的分析方法, 它是经济学的一个透过现象看本质的必不可少的工具。
一、数学在经济学的应用历史
17 世纪 90 年代威廉配第在经济学论文《政治算术》 中将算术引进经济学, 首次运用数学方法来解决经济学问题。 在 19 世纪之前, 经济学主要运用的是初等数学。 从 19 世纪起,经济学的研究引入了变量和函数的概念, 数学方法的运用更为普遍。从 20 世纪 40 年代开始,第三次科技革命的爆发, 有力地推动了数学和经济学的结合。 20 世纪 70 年代至 90 年代索洛和罗曼的经济增长模型等等, 一大批运用数学方法研究经济问题的论著纷纷问世。 这些著作的共同特点是既使用了一般经济概念和传统经济方法, 同时又使用了从最简单的数学符号到最新的数学方法。
二、数学在经济学中的作用
1、数学在经济学中的工具性作用 数学作为经济研究的基础工具, 其作用是不可忽视的, 利用数学语言我们可以将经济学中的某些问题描述得非常清楚, 并且逻辑推理严密精确, 可以防止漏洞和错误, 应用已有的数学知识我们还可以推导新的结论, 得到仅凭直觉无法或不易得出的结论。 因此, 运用数 学知识做经济学的理论研究可以减少无用争论。 同时, 由于经济活动的多样性, 研究中存在许多变化的因素, 导致了经济研究的错综复杂。 而数学就恰恰为这些复杂的思想和现象提供了简洁明了的解释, 为许多错综的数据提供了计算模型, 从而使经济研究简洁条理。
2、数学在经济学中的思想作用 数学的严谨思想在追求精确和理性的经济学中占有非常重要的地位, 数学思想越来越多地贯穿到经济学中来。 改革开放以来, 西方经济学作为市场经济运行描述的基本理论, 对我们经济学学习和研究的作用越来越重要。 我们发现, 西方经济学的思维方式和推理方式的深刻特点之一就表现在其数学性方面, 也正是这一特征使人们常常把经济学看成是最接近自然科学的社会科学学科。 在整个社会科学中, 经济学的理论形式、研究方法是公认为最接近自然科学的。 这表明, 数学作为一种理论信念、方法论和研究手段, 十分明显地体现在西方经济学的基本特征中。 按传统流行的科学观, 一门学科达到科学的一个重要标准是看它能否充分运用数学方法。 而在经济学中, 对于经济现象、经济运行及其规律的描述与研究, 正需要数学方法与数学思想, 从而达到它的科学性。
三、高等数学在经济学中的应用
要想掌握好经济学理论, 学好高等数学是一个非常必要的环节。 大学阶段的高等数学分为微积分、线性代数和概率论与数理统计三大部分。 其中, 数学与经济学联系最紧密的莫过于微分, 比如经济学的核心词语“边际”就是一个将导数经济化的概念, “弹性”这个在经济学中无处不在的词语更是体现了数学思想的重要性。线性代数作为一个将复杂多元方程简单化求解的数学工具, 其重要性集中体现在计量经济学中对大量数据的处理上。 概率论与数理统计在保险学中发挥了重要的作用。 由此我们可以看出数学在经济学中的作用非常重要。 要想学好经济学必须先学好数学, 但近几年来, 关于数学在经济学中的应用有很大争议, 争议的焦点, 不是经济学要不要运用数学方法, 而是如何运用数学方法解决经济学的问题。
四、数学在经济学中的应用存在某些问题
1、在经济学中盲目运用数学知识 数学很重要, 但在经济学研究中, 更重要的是经济研究方法和经济思想, 经济学不是数学, 经济学的主要领域是靠经济学知识而不是数学取胜, 并非所有的经济活动和经济关系都是可以用数学解决的, 它主要还是依靠经济学的思想来解决, 而不是数学推导, 数学只是解决经济学问题的一个工具, 不可滥用。
2、应用数学知识建立模型忽视前提条件 数学方法逻辑严密性和计算准确性的性质决定了 任何一个数学模型都要受到若干条件的约束。 但某些经济学家建立数学模型时根本不去考虑或是过于简化约束条件, 对约束条件不够重视, 仅从模型本身的需要出发而不考虑是否符合客观实际要求。 这样很容易引起理论的混乱和实际操作的重大失误。 由此, 数学在经济学中的应用是非常基础和广泛的, 我们要重视数学在经济学中的作用, 认真学习数学并掌握它的方法与精髓, 同时, 也要重视经济学的方法和思想, 只有这样,我们才能对现实中纷繁复杂的经济现象进行剖析和研究。
3.高一学生求一篇论文,题目《数学在经济生活中的应用》
有一句话可以总结数学与经济生活的关系——数学天生不属于经济生活,但经济生活天生能用到数学。
数学是一种工具,但也是一种思维。人类在无时无刻的用着数学这一种工具,感受着这一种思维的强大力量,从而创造了现在的经济生活。
从早期的人们开始有了剩余“价值”,人们就想着把这些东西转换到使自己更加满足的商品,于是人类开始了原始的交换。从那时开始人类就逐渐发展,到现在的经济生活。
好了,既然交换是经济的起点,那么——用通俗的话来说——谁都想在交换当中得到满意,于是人们开始计算,计算做这件事的价值,数学开始发展。随着经济生活的发展,数学也得到很大的发展。
举例说明,在英国工业革命时期,人们对于曲面的计算还不是很清楚,但经济生活对他的需求越来越大,人们不得不想办法去解决一些那样的问题。牛顿等人开始发现世界上比较完美的理论——微积分原理,数学得到一次飞跃性的发展,经济生活也因此而得到不小的改善。
所以,综上经济生活与数学是相辅相成的,其中任何一个的发展都会导致另一个的发展。
4.什么叫数学期望
数学期望的定义 定义1: 按照定义,离散随机变量的一切可能值工与对应的概率P(若二龙)的乘积之和称为数学期望,记为咐。
如果随机变量只取得有限个值:x,、瓜、兀 源自: 挡土墙优化设计与风险决策研究——兼述黄。 。
《南水北调与水利科技》 2004年 劳道邦,李荣义 来源文章摘要:挡土墙作为一般土建工程的拦土建筑物常用在闸坝翼墙和渡槽、倒虹吸的进出口过渡段,它的优化设计问题常被忽视。
实际上各类挡土墙间的技术和经济效益差别是相当大的。 而一些工程的现实条件又使一些常用挡土墙呈现出诸多方面局限性。
黄壁庄水库除险加固工程的混凝土生产系统的挡土墙建设在优化设计方面向前迈进了一步,在技术和经济效益方面取得明显效果,其经验可供同类工程建设参考。 定义2: 1 决定可靠性的因素常规的安全系数是根据经验而选取的,即取材料的强度极限均值(概率理论中称为数学期望)与工作应力均值(数学期望)之比。
转载请注明出处众文网 » 数学期望在经济问题中的运用毕业论文任务书