1.求一篇关于蝴蝶效应的公共管理类论文
蝴蝶效应:上个世纪70年代,美国一个名叫洛伦兹的气象学家在解释空气系统理论时说,亚马逊雨林一只蝴蝶翅膀偶尔振动,也许两周后就会引起美国得克萨斯州的一场龙卷风。
蝴蝶效应是说,初始条件十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。有些小事可以糊涂,有些小事如经系统放大,则对一个组织、一个国家来说是很重要的,就不能糊涂。
今天的企业,其命运同样受“蝴蝶效应”的影响。消费者越来越相信感觉,所以品牌消费、购物环境、服务态度……这些无形的价值都会成为他们选择的因素。
所以只要稍加留意,我们就不难看到,一些管理规范、运作良好的公司在他们的公司理念中都会出现这样的句子:“在你的统计中,对待100名客户里,只有一位不满意,因此你可骄称只有1%的不合格,但对于该客户而言,他得到的却是100%的不满意。”“你一朝对客户不善,公司就需要10倍甚至更多的努力去补救。”
“在客户眼里,你代表公司”。今天,能够让企业命运发生改变的“蝴蝶”已远不止“计划之手”,随着中国联通加入电信竞争,私营企业承包铁路专列、南京市外资企业参与公交车竞争等新闻的出现,企业坐而无忧的垄断地位日渐势微,开放式的竞争让企业不得不考虑各种影响发展的潜在因素。
精简机构、官员下岗、取消福利房等措施,让越来越多的人远离传统的保障,随之而来的是依靠自己来决定命运。而组织和个人自由组合的结果就是:谁能捕捉到对生命有益的“蝴蝶”,谁就不会被社会抛弃。
2.有关蝴蝶定理的文献综述
蝴蝶定理 蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。
由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 出现过许多优美奇特的解法,其中最早的,应首推霍纳在职1815年所给出的证法。
至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。
这里介绍一种较为简便的初等数学证法。 证明:过圆心O作AD与BC的垂线,垂足为S、T,连接OX,OY,OM,SM,MT。
∵△AMD∽△CMB ∴AM/CM=AD/BC ∵SD=1/2AD,BT=1/2BC ∴AM/CM=AS/CT 又∵∠A=∠C ∴△AMS∽△CMT ∴∠MSX=∠MTY ∵∠OMX=∠OSX=90° ∴∠OMX+∠OSX=180° ∴O,S,X,M四点共圆 同理,O,T,Y,M四点共圆 ∴∠MTY=∠MOY,∠MSX=∠MOX ∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM 这个定理在椭圆中也成立,如图 1,椭圆的长轴A1、A2与x轴平行,短轴B1B2在y轴上,中心为M(o,r)(b>r>0)。 (Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率; (Ⅱ)直线y=k1x交椭圆于两点C(x1,y1),D(x2,y2)(y2>0);直线y=k2x交椭圆于两点G(x3,y3),H(x4,y4)(y4>0)。
求证:k1x1x2/(x1+x2)=k2x3x4/(x3+x4) (Ⅲ)对于(Ⅱ)中的C,D,G,H,设CH交X轴于点P,GD交X轴于点Q。 求证: | OP | = | OQ |。
(证明过程不考虑CH或GD垂直于X轴的情形) 2.解答:北京教育考试院招生考试办公室专家在公布的《2003年全国普通高等学校招生统一考试试题答案汇编》中给出的参考解答如下: (18)本小题主要考查直线与椭圆的基本知识,考查分析问题和解决问题的能力。满分15分。
(Ⅰ)解:椭圆方程为x2/a2+(y-r)2/b2=1 焦点坐标为 (Ⅱ)证明:将直线CD的方程y=kx代入椭圆方程,得b2x2+a2(k1x-r)2=a2b2, 整理,得 (b2+a2k12)x2-2k1a2rx+(a2r2-a2b2)=0 根据韦达定理,得 x1+x2=2k1a2r/(b2+a2k12), x1·x2=(a2r2-a2b2)/( b2+a2k12), 所以x1x2/(x1+x2)=( r2-b2)/2k1r ① 将直线GH的方程y=k2x代入椭圆方程,同理可得 x3x4/(x3+x4)=( r2-b2)/2k2r ② 由①,②得k1x1x2/(x1+x2)=(r2-b2/2r=k2x3x4/(x3+x4) 所以结论成立。 (Ⅲ)证明:设点P(p,o),点Q(q,o)。
由C,P,H共线,得 (x1-p)/( x4-p)=k1x1/k2x4 解得P=(k1-k2)x1x4/(k1x1-k2x4) 由D,Q,G共线,同理可得 q=(k1-k2)x2x3/(k1x2-k2x3) 由k1x1x2/(x1+x2)=k2x3x4/(x3+x4),变形得: x2x3/(k1x2-k2x3)=x1x4/(k1x1-k2x4) 即:(k1-k2)x2x3/(k1x2-k2x3)=(k1-k2)x1x4/(k1x1-k2x4) 所以 |p|=|q|,即,|OP|=|OQ|。 3.简评 本小题主要考查直线与椭圆等基本知识,考查分析问题和解决问题的能力。
试题入门容易,第(Ⅰ)问考查椭圆方程、待定系数法、坐标平移和椭圆性质:焦点坐标、离心率、看图说话即可解决问题,但考查的却都是重点内容。 第(Ⅱ)问是典型的直线与椭圆的位置关系问题。
待证式子中含有x1x2,x1+x2,x3x4,x3+x4这样的对称式,式子结构对称优美,和谐平衡,使人很容易联想起一元二次方程根与系数关系的韦达定理,启示了证明问题的思路。这里用到了解析几何最根本的思想和最根本的方法。
解两个联立的二元二次方程组,用代入消元法得到一元二次方程,分离系数利用韦达定理给出关于x1x2,x1+x2,x3x4,x3+x4的表达式,再分别代入待证式两边运算即达到证明目的。证明的过程中,由两个联立方程组结构的相似性运用了“同理可得”,整个证明过程也令人赏心悦目,感受到了逻辑证明与表达的顺畅、简约的美的魅力。
第(Ⅲ)问证明中用到了三点共线的充要条件,用到了过两点的直线的斜率公式,分别解出p,q以后,|OP|=|OQ|等价转化成了p= -q(或p+q=0。)此时分析前提条件(Ⅱ)及待证结论p= -q,关键在于沟通k1x1x2/(x1+x2)=k2x3x4/(x3+x4)与x1x4/(k1x1-k2x4)=-x2x3/(k1x2-k2x3)的联系。
参考解答中的表述略去了一些变形的中间过程,使人不易看出沟通的线索,以及命题人变形的思路,因此读者理解起来感到困难。如果将两式做如下变形,则思路就显然顺畅自然。
设:k1x1x2/(x1+x2)=k2x3x4/(x3+x4)为①式,两边同取倒数,得 1/k1x2+1/k1x1=1/k2x4+1/k2x3 ①' 设:x1x4/(k1x1-k2x4)=-x2x3/(k1x2-k2x3)为 ②式,两边同取倒数,得k1/x4-k2/x1=k2/x2-k1/x3,移项得k2/x1+k2/x2=k1/x3+k1/x4 ②' 将①'两边同乘以k1·k2,即得 k2/x1+k2/x2=k1/x3+k1/x4 它与②'完全一样。这里利用两式同时变形的方法可以较容易实现目的,有分析、有综合,有思维,有运算。
思路的选择有赖于对式子特征的观察联想。 综观这道题的题目特征及解答过程,我们看到了用代数方程但方法处理几何问题的作用与威力。
4.赏析: 上面我们看到,试题的结构及其解答都令人感到赏心悦目,至此,我们不禁要追问一句:试题是怎么命制出来的?它的背景是什么?它对我们的数学学习与教学、高三复习与备考有什么启示? 关于圆,有一个。
3.关于蝴蝶效应的议论文素材,最少三个
1、丢失一个钉子,坏了一只蹄铁;坏了一只蹄铁,折了一匹战马;折了一匹战马,伤了一位骑士;伤了一位骑士,输了一场战斗;输了一场战斗,亡了一个帝国。
马蹄铁上一个钉子是否会丢失,本是初始条件十分微小的变化,但其“长期”效应却是一个帝国存与亡的根本差别。这就是在军事和政治领域中的所谓“蝴蝶效应”。
2、1998年亚洲发生的金融危机和美国曾经发生的股市风暴实际上就是经济运作中的“蝴蝶效应”;3、1998年太平洋上出现的“厄尔尼诺”现象就是大气运动引起的“蝴蝶效应”。“蝴蝶效应”是混沌运动的表现形式。
当我们进而考察生命现象时,既非完全周期,又非纯粹随机,它们既有“锁频”到自然界周期过程(季节、昼夜等)的一面,又保持着内在的“自治”性质。4、“蝴蝶效应”在社会学界用来说明:一个坏的微小的机制,如果不加以及时地引导、调节,会给社会带来非常大的危害,戏称为“龙卷风”或“风暴”;一个好的微小的机制,只要正确指引,经过一段时间的努力,将会产生轰动效应,或称为“革命”。
转载请注明出处众文网 » 设计蝴蝶阀的毕业论文(求一篇关于蝴蝶效应的公共管理类论文)