1.核磁谱图怎么解读
呃。我该怎么回答好呢。
首先我不清楚你想要问多深,如果只是简单化合物的氢谱,OK,那很简单,几个特殊的位置一看,结合化学位移、裂分情况等就能分析出来。比如图中,化学位移在7左右的复杂裂分很可能就是苯环的峰,结合氢原子个数(图中未进行积分),就能猜测出来是单取代苯环,而且所接基团对邻位有较强的拉电子能力,在高场的两个裂分很显然就是乙基的,综合考虑应当为苯甲酸乙酯,若能结合质谱或者红外当更有说服力。
如果问二维谱,也还好说,和氢谱差不离,就是看两根轴而已,恩,视具体方法有所不同。
如果是碳谱,也不难,只要找好标准,也能进行类似判断。
固体核磁我不大懂。
2.核磁图谱怎么分析
目前应用的主要是氢谱和碳谱。
以核磁共振氢谱为例,峰的数量就是氢的化学环境的数量,而峰的相对高度,就是对应的处于某种化学环境中的氢原子的数量。使用核磁共振仪自带的自动积分仪可以对各峰的面积进行自动积分,得到的数值用阶梯式积分曲线高度表示出来。
不同化学环境中的H,其峰的位置是不同的。峰的强度(也称为面积)之比代表不同环境H的数目比。
例:CH3CH2OH中,有3种H,则有3个峰,强度比为:3:2:1。
CH3OCH3中,只有一种H,则有1个峰。
CH2=CH-CH3中,有三种H,个数比为:2:1:3
一氯苯中:有3种H,个数比:2:2:1
CH3COOCH3中有2种H,个数比3:3or1:1。
建议百度百科:核磁共振氢谱,看不明白的话再查阅波谱解析的相关书籍。
3.核磁共振氢谱
核磁共振指的是H在一定外磁场作用下吸收能量,发生“共振”的现象。
横坐标指的是外磁场变化频率,纵坐标和H在某频率下吸收的总能量对应。 峰的高度应该没什么意义,其个数和基团的结构有关。
基团结构越简单,紧邻的一组峰个数就越少。 就好比用手把两个重物从地上全部或部分搬到桌子上,如果二者重量相等,那么耗费的功就只有三种情况;如果二者重量不等,则有四种。
重物的数量和重量分布有变化,做功大小的可能性也就越复杂。 具体数值忘记了。
不过似乎应该是以某种化学物质为基准,向其两边偏离十几、几十赫兹的样子。
4.核磁共振的图谱的简化
一级图谱比较简单,可以直接根据上面所述几个方面来进行剖析,但解剖的顺序可以根据实 际情况灵活掌握。高级图谱的谱线一般都很复杂,难以直接剖析,为了便于解剖,最好在剖析前, 先采用合理的方法简化图谱a简化图谱常用的方法请参阅有关专著。
去偶处理
13C的核磁共振原理与1H的核磁共振原理相同,因此13C与直接相连的氢核也会发生偶合作用。由于有机分子大都存在碳氢键,从而使裂分谱线彼此交叠,谱图变得复杂而难以辨认,只有通过去偶处理,才能使谱图变得清晰可辨。最常用的去偶法是质子(噪声)去偶法。该法采用双照射法,照射场(H2)的功率包括所有处于各种化学环境中氢的共振频率,因此能将13C与所有氧核的偶合作用消除,使只含C、H、O、N的普通有机化合物的13C-NMR谱图中,13C的信号都变成单峰,即所有不等性的13C核都有自己的独立信号。因此,该法能识别分子中不等性的碳核。下图是丙酮的13C谱。(a)是偶合谱,(b)是质子去偶谱。在偶合谱中,羰基碳(δ=206.7)与六个氢发生二键偶合,裂分成七重峰,α碳(δ=30.7)与三个氢发生一键偶合,裂分成四重峰。在质子去偶谱中,羰基碳和α碳的裂分峰均变成了单峰。丙酮有两个相同的α碳和一个羰基碳,α碳的峰强度较羰基碳的峰强度大。质子(噪声)去偶碳谱就是通常说的碳谱,又称为宽带去偶碳谱,用13C{H}表示。其它去偶的方 式还很多,有兴趣的读者请参阅有关专著。
转载请注明出处众文网 » 附在毕业论文的核磁谱图(核磁谱图怎么解读)