1.什么是非线性薛定谔方程
非线性薛定谔方程(nonlinear Schrodinger equation )一个含有孤立子波解的非线性方程。它与诸如非线性光学、等离子体的离子声波等理论物理中的许多非线性间题密切相关.它的解可应用与线性薛定愕方程的特征值问题相关的逆散射问题方法求得.
非线性薛定谔方程(nonlinear Schrodinger equation )一个含有孤立子波解的非线性方程.其形如
它与诸如非线性光学、等离子体的离子声波等理论物理中的许多非线性间题密切相关.它的解可应用与线性薛定愕方程的特征值问题相关的逆散射问题方法求得.[1]
2.什么是非线性薛定谔方程
非线性薛定谔方程(nonlinear Schödinger(NLS)equation) 通常的(线性)薛定谔方程不仅具有明确的量子力学意义,而且还能描述各种弱色散缓慢调制波动,其计及量子或经典弱非线性效应后的各种修正形式即为NLS方程.典型的NLS方程仅含立方非线性项 iΨt+Ψxx±2|Ψ|2Ψ=0 它也具有上述线性情况下的双重意义,例如在量子力学中Ψ可代表弱互作用非理想玻色气体的凝聚波函数,而在经典波动意义下Ψ则可代表深水表面波、Langmuir等离子体波及Kerr介质中超短脉冲光波之调制波幅.因其色散与非线性效应得以微妙。
3.用matlab求解非线性薛定谔方程
摘要:本文首先对薛定谔方程的提出及发展做了一个简单介绍。然后,以在一维空间运动的粒子构成的谐振子的体系为例,详细介绍了矩阵法求解薛定谔方程的过程及公式推导。最后,通过MATLAB编程仿真实现了求解结果。
关键词:定态薛定谔方程求解 矩阵法
MATLAB仿真
薛定谔方程简介
1.1背景资料
薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。其仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。
薛定谔方程建立于
1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程为
在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。
量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程揭示了微观物理世界物质运动的基本规律,被广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。
定态薛定谔方程直角坐标系形式
4.薛定谔方程的背景与发展
薛定谔方程(Schrodinger equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。
薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,其正确性只能靠实验来确定。
5.如何从麦克斯韦方程组推到矢量非线性薛定谔方程
非线性薛定谔方程(nonlinear Schödinger(NLS)equation) 通常的(线性)薛定谔方程不仅具有明确的量子力学意义,而且还能描述各种弱色散缓慢调制波动,其计及量子或经典弱非线性效应后的各种修正形式即为NLS方程.典型的NLS方程仅含立方非线性项 iΨt+Ψxx±2|Ψ|2Ψ=0 它也具有上述线性情况下的双重意义,例如在量子力学中Ψ可代表弱互作用非理想玻色气体的凝聚波函数,而在经典波动意义下Ψ则可代表深水表面波、Langmuir等离子体波及Kerr介质中超短脉冲光波之调制波幅.因其色散与非线性效应得以微妙。
6.薛定谔方程及其意义
程或定态薛定谔方程。
薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。 薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。
当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。 .薛定谔提出的量子力学基本方程 。
建立于 1926年。它是一个非相对论的波动方程。
它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场U(r,t)中运动的薛定谔方程为。
在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。
当势函数U不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。
量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。
薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。
7.薛定谔方程的介绍
薛定谔方程(Schrödinger equation)又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。薛定谔方程表明量子力学中,粒子以概率的方式出现,具有不确定性,宏观尺度下失效可忽略不计。
转载请注明出处众文网 » 非线性薛定谔方程毕业论文(什么是非线性薛定谔方程)