1.求集成直流稳压电源的设计论文集成直流稳压电源
如果您仅仅需要BAIDU文献,那就不用看。
1。 基于先进集成电路多输出线性直流稳压电源设计 被引次数:7次 孟祥印 肖世德 文献来自:微计算机信息 2005年 第01期 三端集成直流稳压电源的电路连接方式一般为:图中,引脚1为电压变换的输入端,标识为Vin,引脚2为电压变换后的输出端,标识为Vout,引脚3为接地端,标识为GND。
0 。
5A该部分电路的核心器件为可调式三端集成直流稳压电源LM317和满量程5。
1K欧姆的电位器。LM317与合适电位器和电阻器相组合,可以构成电压从1 。
2。 高性能直流稳压电源的设计 被引次数:2次 张高潮 姬振山 文献来自:郑州纺织工学院学报 1996年 第03期 市场上许多新型的直流稳压电源不断出现,但是能够结合学校学生实验使用的直流稳压电源还不多。
为此,我们结合实验教学工作和多年的维修经验,开发研制出了一种线路简单、成本低、动态响应快、纹波小、效率高、不怕短路过流、稳压性能好的直流稳 。
3。
本质安全型开关直流稳压电源 被引次数:3次 王花鱼 文献来自:山西煤炭 2000年 第02期 本文介绍一种已通过本质安全火花试验并得到应用的串联开关稳压电源。 1 开关直流稳压电源主要技术参数输入交流电压 AC127V±50%*127V;输出直流电压 两路均为DC15V,15A 。
4。 一种高效线性直流稳压电源的设计 被引次数:1次 黄河 李继榜 文献来自:移动电源与车辆 1999年 第04期 一种高效线性直流稳压电源的设计@黄河$西安空军电讯工程学院基础部!陕西西安710077@李继榜$西安空军电讯工程学院基础部 。
高效介绍了双极型低压降线性集成电压调整器LT1083,并结合晶闸管调压技术设计了一种高效线性稳压电源。〔1〕 新型开关电源及其应用- 何希才编著〔M〕- 人民邮电出版社,199 。
5。 一种高精度数控直流稳压电源的设计 被引次数:1次 贺洪江 李宪红 阎舒静 文献来自:河北建筑科技学院学报(自然科学版) 2000年 第01期 直流稳压电源作为一种必备的电子设备得到了广泛的应用。
而目前常贝的直流稳压电源,大都采用串联反馈式稳压原理,通过调整输出端取样电阻支路中的电位器来调整输出电压。由于电位器阻值变化的非线性和调整范围窄(约300“) 。
6。 自制输出电压负到正连续可调的稳压电源 被引次数:1次 蒋玉俊 文献来自:电气电子教学学报 1998年 第01期 南京210096直流稳压电源;;功率集成运算放大器本文介绍了我们研制的一种新颖的直流串联稳压电源,其输出电压从-12V至+12V间连续可调,最大输出电流为500mA,输出电阻约0 。
7。 直流稳压电源 河北大学电子与信息工程系 李勇 刘智 谢涛 四川大学 刘桄序(执笔) 文献来自:电子报 2001年 电路器件采用常用的NE555和LM324集成芯片,易于电路调试。
$$ 一、稳压电源框图结构 $$ 1。 串联式稳压电源 串联式稳压电源具有较宽的输出电压调节范围。
合理地选择元器件,可以达到较高的性能指标,如:电压调整率、负载调整率、纹波电 。
8。
脉宽调制型可调直流稳压电源 被引次数:1次 戚栋 文献来自:仪表技术 1995年 第02期 国内许多行业对高电压、大电流、大范围连续可调的大功率直流稳压电源的需求越来越多。 本文介绍的可调直流稳压电源与传统的电源装置相比,具有调压、调频特性好,整体电路结构简单、体积小、成本低、效率高、稳定性好等优点,可广泛用于测量和实验等领域。
一、系统组成及工作原理本文 。
9。
直流稳压电源初步设计 苏启录 文献来自:闽江学院学报 1995年 第03期 060 上述直流稳压电源电路构成及元件参数选择只是直流稳压电源设计的初步。 由理论推导和估算出来的直流稳压电源的特性指标和主要质量指标应该经过实验验证 。
10。 输出电压连续可调的直流稳压电源 被引次数:1次 常研明 叶树涛 李久武 文献来自:家用电器科技 1997年 第02期 输出电压连续可调的直流稳压电源常研明叶树涛李久武国营八二三三厂(150223)本机为输出电压在0~100V间不分档、可连续调节的直流稳压电源,其过载?。
上一页 1 [2] [3] [4] [5] [6] [7] [8] [9] [10] 下一页 您可以去我个人中心(点我名字进去),按照上边的"老君论文资料查找方法"来查找和下载您所需要的论文资料.字少找期刊文献,字多找硕博文献,毕业设计找书籍资料,外文资料也就说明。
2.电源开关设计论文怎么写
一种USB电源开关的设计 摘要: 设计了一种低导通损耗的USB电源开关电路。
该电路采用自举电荷泵为N型功率管 提供足够高的栅压,以降低USB开关的导通损耗。在过载情况下,过流保护电路能将输出电流限 制在0.3 A。
关键词: USB开关;自举电荷泵; N型功率管;过流保护 1引言 通用串行总线(Universal Serial Bus)使PC机 与外部设备的连接变得简单而迅速,随着计算机以 及与USB相关便携式设备的发展,USB必将获得 更广泛的应用。由于USB具有即插即用的特点,在 负载出现异常的瞬间,电源开关会流过数安培的电 流,从而对电路造成损坏。
本文设计的USB电源开关采用自举电荷泵,为 N型功率管提供2倍于电源的栅驱动电压。在负载 出现异常时,过流保护电路能迅速限制功率管电流, 以避免热插拔对电路造成损坏。
2 USB开关电路的整体设计思路 图1为USB电源开关的整体设计。其中,VIN 为电源输入,VOUT为USB的输出。
在负载正常的情 况下,由电荷泵产生足够高的栅驱动电压,使 NHV1工作在深线性区,以降低从输入电源(VIN 到负载电压(VOUT)的导通损耗。当功率管电流高于 1 A时,Current-sense输出高电平给过流保护电路 (Current-limit);过流保护电路通过反馈负载电压 给电荷泵,调节电荷泵输出(VPUMP),从而使功率管 的工作状态由线性区变为饱和区,限制功率管电流, 达到保护功率管的目的。
当负载恢复正常后,Cur- rent-sense输出低电平,电荷泵正常工作。 3 电荷泵设计 图2为一种自举型(Self-Boost)电荷泵的电路 原理图。
图中,Φ为时钟信号,控制电荷泵工作。初 始阶段电容,C1和功率管栅电容CGATE上的电荷均 为零。
当Φ为低电平时,MP1导通,为C1充电,V1 电位升至电源电位,V2电位增加,MP2管导通。假 设栅电容远大于电容C1,V2上的电荷全部转移到 栅电容CGATE上。
当Φ为高电平时,MN1导通,为 C1左极板放电,V1电位下降至地电位,V2电位下 降,MP2管截止,MN2管导通,给电容C1右极板充 电至VIN。在Φ的下个低电平时,V1电位升至电源 电位,V2电位增加至2VIN,MP2管导通,VPUMP电 位升至2VIN-VT。
自举电荷泵不需要为MN2和MP2提供栅驱 动电压,控制简单[1],但输出电压会有一个阈值损 失。图3是改进后的电荷泵电路图,Φ1和Φ2为互 补无交叠时钟。
由MN2、MN5、MP3、MP2和电容 C2组成的次电荷泵为MN4、MP4提供栅压,以保证 其完全关断和开启。当Φ1为低电平时,MP1导通, 电位增加,此时,V3电位为零,MP4导通,V2上的电 荷转移到栅电容CGATE上,VPUMP电位升高。
当Φ1为 高电平时,MP2导通,为C2充电,V4电位上升至电 源电位,V3电位随之上升,MP3导通,VPUMP电位继 续升高。MN3相当于二极管,起单向导电的作用。
在VPUMP电压升高到VIN+VT以后,MN3隔离V3 到电源的通路,保证V3的电荷由MP3全部充入栅 电容。这样,C1和C2相互给栅电容充电,若干个时 钟周期后,电荷泵输出电压接近两倍电源电压[2]。
在电荷泵输出电压升高的过程中,功率管提供的负 载电流逐渐上升,避免在容性负载上引起浪涌电流 4 过流保护电路设计 当出现过载和短路故障时,负载电流达到数安 培,需要精确的限流电路为功率管和输入电源提供保 护。对于MOS器件,只有工作在饱和区时的电流容 易控制。
限流就是通过反馈负载电压,调节电荷泵输 出电压来实现的。图4是限流电路的原理图。
N型功率管NHV的源与P型限流管MP6的 栅相接,N型功率管NHV的栅与P型限流管MP6 的源相接。从而达到控制功率管栅源压降的目的。
当负载电流超过1 A时,电流限信号(VLIMIT)为高 电平,MN7导通,栅电荷经MP6流向地,栅电压减 小,功率管工作在饱和区。C1、C2为电荷泵电容值, 在一个时钟周期T内,由电荷泵充入的栅电荷为: Q=VIN*C1+VIN*C2(1) 当功率管栅压稳定时,电荷泵充入的栅电荷等 于限流管放掉的栅电荷。
限流管泄放电流为: IL=QT=VIN*C1+VIN*C2T(2) 由VGS(NHV)=VSG(MP6)(3) 得功率管和限流管的电流关系: 5 仿真结果与讨论 图5为负载正常情况下负载输出电压和功率管 电流的仿真波形。电源电压为5 V,C1、C2电容值为 1 pF,时钟周期为40μs,NHV和MP6宽长比的比值 为300,功率管的并联个数为1*103。
采用0.6μm 30 V BCD工艺,在典型条件下,用HSPICE对整体电 路仿真。由波形可以看出,在1 ms内,负载输出电压 逐渐上升,功率管电流没有过冲,启动时间为1.7 ms。
3 ms后,功率管完全开启,为负载提供电源。 表1为限流电路工作时功率管的平均栅电压和 平均电流。
图6为USB开关启动8 ms后负载短路 到恢复正常的仿真结果。USB开关在负载正常情 况下启动,8 ms后负载短路,负载电流过冲到3.1 A。
当过流保护电路工作后,过流保护电路将电流 限制在0.3 A,保护了USB端口。16 ms后,负载恢 复正常,电源开关重新启动. 图6 USB开关在启动、限流和恢复正常过程中,电荷泵 输出电压、负载输出电压和功率管电流的仿真波形 Fig.6 Simulation waveforms of charge pump output volt- age,power switch output voltage and power tran- sistor。
3.电源开关设计论文怎么写
一种USB电源开关的设计 摘要: 设计了一种低导通损耗的USB电源开关电路。
该电路采用自举电荷泵为N型功率管 提供足够高的栅压,以降低USB开关的导通损耗。在过载情况下,过流保护电路能将输出电流限 制在0.3 A。
关键词: USB开关;自举电荷泵; N型功率管;过流保护 1引言 通用串行总线(Universal Serial Bus)使PC机 与外部设备的连接变得简单而迅速,随着计算机以 及与USB相关便携式设备的发展,USB必将获得 更广泛的应用。由于USB具有即插即用的特点,在 负载出现异常的瞬间,电源开关会流过数安培的电 流,从而对电路造成损坏。
本文设计的USB电源开关采用自举电荷泵,为 N型功率管提供2倍于电源的栅驱动电压。在负载 出现异常时,过流保护电路能迅速限制功率管电流, 以避免热插拔对电路造成损坏。
2 USB开关电路的整体设计思路 图1为USB电源开关的整体设计。其中,VIN 为电源输入,VOUT为USB的输出。
在负载正常的情 况下,由电荷泵产生足够高的栅驱动电压,使 NHV1工作在深线性区,以降低从输入电源(VIN 到负载电压(VOUT)的导通损耗。当功率管电流高于 1 A时,Current-sense输出高电平给过流保护电路 (Current-limit);过流保护电路通过反馈负载电压 给电荷泵,调节电荷泵输出(VPUMP),从而使功率管 的工作状态由线性区变为饱和区,限制功率管电流, 达到保护功率管的目的。
当负载恢复正常后,Cur- rent-sense输出低电平,电荷泵正常工作。 3 电荷泵设计 图2为一种自举型(Self-Boost)电荷泵的电路 原理图。
图中,Φ为时钟信号,控制电荷泵工作。初 始阶段电容,C1和功率管栅电容CGATE上的电荷均 为零。
当Φ为低电平时,MP1导通,为C1充电,V1 电位升至电源电位,V2电位增加,MP2管导通。假 设栅电容远大于电容C1,V2上的电荷全部转移到 栅电容CGATE上。
当Φ为高电平时,MN1导通,为 C1左极板放电,V1电位下降至地电位,V2电位下 降,MP2管截止,MN2管导通,给电容C1右极板充 电至VIN。在Φ的下个低电平时,V1电位升至电源 电位,V2电位增加至2VIN,MP2管导通,VPUMP电 位升至2VIN-VT。
自举电荷泵不需要为MN2和MP2提供栅驱 动电压,控制简单[1],但输出电压会有一个阈值损 失。图3是改进后的电荷泵电路图,Φ1和Φ2为互 补无交叠时钟。
由MN2、MN5、MP3、MP2和电容 C2组成的次电荷泵为MN4、MP4提供栅压,以保证 其完全关断和开启。当Φ1为低电平时,MP1导通, 电位增加,此时,V3电位为零,MP4导通,V2上的电 荷转移到栅电容CGATE上,VPUMP电位升高。
当Φ1为 高电平时,MP2导通,为C2充电,V4电位上升至电 源电位,V3电位随之上升,MP3导通,VPUMP电位继 续升高。MN3相当于二极管,起单向导电的作用。
在VPUMP电压升高到VIN+VT以后,MN3隔离V3 到电源的通路,保证V3的电荷由MP3全部充入栅 电容。这样,C1和C2相互给栅电容充电,若干个时 钟周期后,电荷泵输出电压接近两倍电源电压[2]。
在电荷泵输出电压升高的过程中,功率管提供的负 载电流逐渐上升,避免在容性负载上引起浪涌电流 4 过流保护电路设计 当出现过载和短路故障时,负载电流达到数安 培,需要精确的限流电路为功率管和输入电源提供保 护。对于MOS器件,只有工作在饱和区时的电流容 易控制。
限流就是通过反馈负载电压,调节电荷泵输 出电压来实现的。图4是限流电路的原理图。
N型功率管NHV的源与P型限流管MP6的 栅相接,N型功率管NHV的栅与P型限流管MP6 的源相接。从而达到控制功率管栅源压降的目的。
当负载电流超过1 A时,电流限信号(VLIMIT)为高 电平,MN7导通,栅电荷经MP6流向地,栅电压减 小,功率管工作在饱和区。C1、C2为电荷泵电容值, 在一个时钟周期T内,由电荷泵充入的栅电荷为: Q=VIN*C1+VIN*C2(1) 当功率管栅压稳定时,电荷泵充入的栅电荷等 于限流管放掉的栅电荷。
限流管泄放电流为: IL=QT=VIN*C1+VIN*C2T(2) 由VGS(NHV)=VSG(MP6)(3) 得功率管和限流管的电流关系: 5 仿真结果与讨论 图5为负载正常情况下负载输出电压和功率管 电流的仿真波形。电源电压为5 V,C1、C2电容值为 1 pF,时钟周期为40μs,NHV和MP6宽长比的比值 为300,功率管的并联个数为1*103。
采用0.6μm 30 V BCD工艺,在典型条件下,用HSPICE对整体电 路仿真。由波形可以看出,在1 ms内,负载输出电压 逐渐上升,功率管电流没有过冲,启动时间为1.7 ms。
3 ms后,功率管完全开启,为负载提供电源。 表1为限流电路工作时功率管的平均栅电压和 平均电流。
图6为USB开关启动8 ms后负载短路 到恢复正常的仿真结果。USB开关在负载正常情 况下启动,8 ms后负载短路,负载电流过冲到3.1 A。
当过流保护电路工作后,过流保护电路将电流 限制在0.3 A,保护了USB端口。16 ms后,负载恢 复正常,电源开关重新启动. 图6 USB开关在启动、限流和恢复正常过程中,电荷泵 输出电压、负载输出电压和功率管电流的仿真波形 Fig.6 Simulation waveforms of charge pump output volt- age,power switch output voltage and p。
4.求开关电源设计论文
开关电源的PCB设计规范 在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出。
二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。
三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。
每一个开关电源都有四个电流回路: (1).电源开关交流回路 (2).输出整流交流回路 (3).输入信号源电流回路 (4).输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。
电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。
建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下: ·放置变压器 ·设计电源开关电流回路 ·设计输出整流器电流回路 ·连接到交流电源电路的控制电路 ·设计输入电流源回路和输入滤波器设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则: (1)首先要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰。
电路板的最佳形状矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm。 (2)放置器件时要考虑以后的焊接,不要太密集. (3)以每个功能电路的核心元件为中心,围绕它来进行布局。
元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接,去耦电容尽量靠近器件的VCC。 (4)在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。
(5)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 (6)布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。
(7)尽可能地减小环路面积,以抑制开关电源的辐射干扰。 四、布线开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应。
即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近。
印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比。长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量。
根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。
接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法。因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定。
在地线设计中应注意以下几点: 1.正确选择单点接地通常,滤波电容公共端应是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,并且本级。
5.供用电技术毕业设计论文
无线供电技术方案及应用 摘要:无线供电是一种方便安全的新技术,无须任何物理上的连接,电能可以无接触地传输给负载。
通过介绍无线供电的原理 和简易的无线供电模型,探讨和分析其中一些关键问题。 关键词:无线供电;电磁波;电磁耦合;非辐射性谐振磁耦合 无线电是指在自由空间(包括空气和真空)传播的电磁波。
无线电技术是通过无线电波传播信号的技术。无线电技术的原 理在于,导体中电流强弱的改变会产生无线电波。
利用这一现 象,通过调制可将信息加载于无线电波之上。当电波通过空间传 播到达收信端,电波引起的电磁场变化又会在导体中产生电流。
通过解调将信息从电流变化中提取出来,就达到了信息传递的 目的。无线电技术大量应用于以无线广播、电视、移动通讯和无 线数据传输网络中。
既然电磁波不需要介质也能向外传递能量, 那么我们能不能在电力传送上也采用无线传输的方式呢? 1电磁波方案 1.1原理 电磁波,俗称无线电波是人们非常熟悉的一个概念。电磁波 不仅能传输信号,它也能传输电能。
1.2应用 美国一家公司Power Cast开发了这项技术,整个系统基本 上包含了两个部件,称为Power Caster的发射器模块和称为 Powerharvester的接收器模块,前者可插入在插座上,后者则嵌入 在电子产品上。发送器发射安全的低频电磁波,接收器接收发射 频率的电磁波,据称约有70%的电磁信号能量转换为直流电能。
该项技术之所以会得到多家厂商的青睐,原因在于它独特的电 磁波接收装置,能够根据不同的负载、电场强度来作调整,以维 持稳定的直流电压。可为各种电子产品充电或供电,包括耗电量 相对较低的电子产品,诸如手机、MP3随身听、温度传感器、助听 器,甚至汽车零部件和医疗仪器。
2电磁感应(磁耦合)方案 2.1原理 电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化。电磁感应是电磁学中的基本原 理,变压器就是利用电磁感应的基本原理进行工作的,变压器由 一个磁芯和二个线圈,即初级线圈与次级线圈组成。
当初级线圈 两端加上一个交变电压时,磁芯中就会产生一个交变磁场,从而 在次级线圈上感应一个相同频率的交流电压,电能就从输入电 路传输至输出电路。对图1所示的变压器基本电路,两个端口的 电压降可表示为: V1=jwL1I1-jwMI2 Y2=jwMI1-jwL2I2=ZLI2 式中L1、L2和M分别为初级电感、次级电感与互感,ZL是 负载电阻。
初、次级间耦合度可用耦合系数K来定义:K=M/ 32 姨L1L2 耦合系数反映了变压器的优值,对于一个近似于理想的变压器, 可简单表示为:V1/V2≈L1/L2≈N1/N2 式中N1与N2分别是两个电感的匝数,就是所说的电压比 等于匝数比。 2.2应用 应用于无线供电或充电的装置而言,其初级线圈与次级线 圈处于两个分离的各自部件中,因而线圈间的耦合是比较松散 的。
该系统相当于一个分离式疏松耦合变压器,选用Ferrite芯增 加其耦合效率、减少漏磁。 最早使用电磁感应原理传输能量的是电动牙刷。
电动牙刷 经常接触水,不采用直接充电方案,在充电座和牙刷中各有一个线圈, 当牙刷放在充电座上时就有磁耦合作用,类似一个变压器,感应 电压整流后就可对镍镉电池充电,整个电路消耗功率约3W。 日本东京大学的教授们设计了一种塑料薄膜电源,很有创 意,用途也十分广泛。
例如,可将它铺在地板上或桌子上,或嵌入 在墙壁上,为圣诞树上发光二极管、装饰灯供电,为鱼缸水中灯 泡或小型电机供电。薄膜电源由四层塑料薄膜组成,最低一层是 电导可控的有机晶体管,上面是感测兼容电子设备接近的铜线 圈,再上面是接通或关闭电源的MEMS开关,最上面一层是传送 电能的铜线圈。
制作工艺采用了丝网印刷和类似于喷墨打印的 新工艺。它的工作过程是这样的;当物体处于薄膜2.5cm范围内 时,最靠近的MEMS开关接通电源,电感线圈就利用感应原理向 设备供电。
据称,该项技术的效率是很高的,电源传输效率可 81.4%。目标的价位每平方米约100美元。
英国一家公司Splash power推出一款利用电磁感应原理 的手持式设备无线充电器。主机Splash Pad是一个经久耐用、鼠标垫大小充电座,另一个部件是安置在PDA或手机内的Splash Module。
图2是它的原理示意图。当设备放置在Splash Pad上时,Splash Module有效地从充电器吸收能量,为设备中的 电池充电。
Splash Module可按产生的电功率要求、空间大小和 形状定制,直接整合在设备中,或作为一个附件使用。它的优点 是:高效率接收器,符合设备充电协议。
实时、合理的检测器,防 止充电器误用。自动处于低功率状态,符合欧洲EnergyStar准 则。
可缩放的磁芯体拓扑,支持目前的和未来的产品市场。 电磁感应还被用来为MEMS器件供电。
MEMS器件,尤其是内置 执行器的微型器件对电源有特殊要求,这里无线供电就显示出 它的优越性,没有物理限制,高电压和高功率可能性。 3非辐射性谐振磁耦合方案 3.1原理 2007年,美国麻省理工学院(MIT)以Marin Solijacic为首 的研究团队完成了一项无线传输电力的实验。
实验室里放置着2 个铜线圈,一个线圈通电,另一个放在离它2米外。
6.直流稳压电源 毕业论文
去百度文库,查看完整内容>
内容来自用户:我是你大爷741
编号:JX/GC7.5-04-JL06
学校代码10857学号20122111322
分类号密级公开毕业设计(论文)
(直流稳压电源的设计)
学历层次| 高职|
教学系名称|电子工程系|
专业名称|电子信息工程技术|
学生姓名|郑磊|
指导教师|国佳|
2015年4月2日
摘要
直流稳压电源由于具有效率高、体积小、重量轻的特点,近年来获得了飞速发展。直流稳压电源高频化是其发展的方向,高频化使开关电源小型化,并使直流稳压电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。本文主要采用变压、整流、滤波、稳压的流程思路将输入220V交流电转换成电压9V的直流电。直流开关稳压器中所使用的大功率开关器件价格较贵,其控制电路亦比较复杂,另外,开关稳压器的负载一般都是用大量的集成化程度很高的器件组成的电子系统。晶体管和集成器件耐受电、热冲击的能力较差。因而开关稳压器的保护应该兼顾稳压器本身和负载的安全。保护电路的种类很多,本文介绍了极性保护、程序保护、过电流保护、过电压保护、欠电压保护以及过热保护等电路。通常选用几种保护方式加以组合,构成完善的保护系统。直流高压稳压电源的长期稳定性主要受温度的影响,文中分析了直流高压稳压电源的构成原理,建立了温度稳定性的数学模型,给出了精确和可行的定量计算方法,并应用到具体的实例中加5.12(用模拟万用表欧姆档测量二极管的电阻,当电阻显示为较小值时,
7.开关电源的设计 论文及原理图
基于AT89C52和IW1692的智能开关电源设计与研究3摘 要:针对采用模拟控制的开关电源的一些问题,提出了一款以AT89C52为核心控制器,利用了AC/DC电源控制芯片(IW1692)的数字化智能开关电源系统,并对该系统的硬件电路和软件设计进行了介绍。
通过测试,本系统较好地解决了模拟开关电源的缺点,达到了相应的目的要求。关键词:开关电源;智能化;数字化 0 引 言随着开关电源技术的成熟,在有些应用场合要求开关电源具有一定的智能,能实现精确的程序控制,并能组网工作,以便于实时了解设备的参数(如电压、电流)、工作状态(正常、故障)等信息。
对于采用模拟量反馈控制的开关电源,在这些场合使用时不可避免地存在这样一些问题:(1)负载在较大范围内变化时反馈环路不稳定,易产生自激振荡。(2)不能实现精确的程序控制。
电池的充电设备、TG脉冲弧焊电源设备必须按照工作规程进行程序控制。对电源的输出要求可能为恒流恒压或恒压限流,这样所用的电源必须能够在各种工作状态之间自由转换,这是常规开关电源难以实现的。
(3)伺服型开关电源常要求电源的输出受外电路控制,而远程控制信号通常为模拟信号,在传输过程中常常会受到外界干扰,导致控制失败。用数字控制方式代替模拟控制,上述问题可以得到很大的改善。
1 数字化智能开关电源的设计思路及要求 智能化开关电源的主要功率变换电路仍然采用与传统开关电源相同的拓扑结构,但其反馈控制环路不采用传统的模拟控制方式,而是采用数字控制方式,即误差采样,脉冲宽度调制(PWM)的调制信号的计算、生成,遥感信号的接收、处理等控制部分电路均使用数字控制技术。通过智能化的数字控制技术,力求解决环路的稳定性、抗干扰性、电源远程控制性等问题。
本开关电源主要技术指标:①交流输入电压85~265 V AC宽范围输入;②直流输出电压5~15 V连续可调;③输出电压调整率≤2.5%;④具有输出短路控制;⑤具有电压显示功能及故障报警指示。2 硬件电路设计2.1 硬件电路原理系统原理框图如图1所示。
电路的工作原理为,市电经EM I滤波、整流滤波变成直流电送入功率变换电路(DC/DC),功率变换电路在PWM电路和单片机的控制下输出稳定的直流电压。用户可根据需要通过键盘对开关电源输出的电压值调节,单片机系统自动对电源输出电压进行数据采样,并与用户给定数据进行比较,然后根据设置的调整算法控制开关调整电路,使电源输出电压符合给定值。
单片机在调整电源输出电压的同时还要检测电路的输出功率,当输出功率超过最大功率时,就起动保护电路,实现保护功能。为了使智能开关电源能可靠、安全地工作,本系统可设置多重监测和保护系统,主要包括过压、欠压和短路保护。
2.2 主要芯片介绍2.2.1 IW 1692WI 1692是一种采用数字控制技术,高性能的AC/DC电源控制器。其数字调节设计是高效率的,内置保护功能,使外部元件较少,简化设计使电路成本较低,电路工作可靠。
WI1692无需次级反馈电路,但能实现良好的线性负载调节;无需环路补偿元件,但提供稳定的运行。脉冲波形分析设计在第一环路,使得反应速度远远超过传统解决方案,从而提高了动态负载响应。
内置功率限定功能,使变压器设计变得最优化,可以使用最普遍的离线设计变压器绕组,并且提供宽输入电压范围,低起动电压。当输出电流大于最大负载电流的5%时,WI1692以固定频率PWM模式运行。
当输出电流减小,开关管导通时间Ton也减小,当Ton下降至Ton2m in,芯片转换为脉冲频率调制(PFM)模式,即轻载时电源转换为PFM模式,使电路损耗达到最低。这些使WI1692成为最理想电源控制的选择,并且符合最新的电源标准。
2.2.2 AT89C52在兼顾运算能力与控制性能,并考虑设计成本及产品投入使用的经济等因素之后,在此选用传统的性价比高的AT89C52单片机为核心控制器。AT89C52是一种低功耗、高性能的片内含有8 kB快闪可编程/擦除只读存储器的8位CMOS微控制器,使用高密度、非易失存储技术制造。
芯片上的EPROM允许在线编程或采用通用的非易失存储编程器对程序存储器重复编程。2.2.3 MAX1247、MAX525和74HC573MAX1247是4通道模拟输入12位、串行输出A/D转换器;MAX525是4通道模拟输出、12位串行输入D/A转换器。
这两种芯片特性有很多相似之处,可以和单片机构成一个完整的4通道测控系统。采用串入、串出,解决了单片机口线资源不足的缺点。
74HC573是八进制3态非反转透明锁存器。2.3 电路实现2.3.1 开关电源电路及主要元器件选择开关电源电路如图2所示。
本部分电路主要实现交流EM I滤波、整流滤波、钳位保护、PWM控制、DC/DC输出,并由输入输出电阻分压进行采样。 (1)交流EM I滤波及整流滤波。
电压输入后由C1、C2、C3、C4及L1组成交流EM I滤波。(D1~D4)4个二极管(GT1040)组成桥式整流电路,后接C5、C6、R1及L2滤波电路。
变压器初级线圈取144 T,由公式NBNAU in_m in=Uout_max,得次级为18 T,辅助绕组为36 T,因为7815输入电压范围为15~35 V。(2)钳位保护电路。
钳位电路主要用来限。
8.急求供用电技术毕业论文,1.5W字,谢谢
地铁盾构施工用电技术 1 工程施工概况 广州市地铁4#线琶仑盾构区间工程由1组双单线隧道组成,隧道总长3830.625m单线延米,其中右线1914.2m,左线1916.425m,主体工程采用盾构施工,隧道内径为5.4m,沿线穿边如得到电子厂、黄埔涌、仑头海珠江水系、海珠区万亩果园、南环高速公路,地质情况较为复杂。
2 主要设备选择及容量 隧道掘进主要选用进口造价较低的日本三菱士压平衡盾构机2台,每台三菱盾构机配置2台各1000kVA移动式变压器,左、右洞口各设2台功率为74kW的通风机通过风管往洞内送空气。地面根据施工需要布置用电功率为161.5kW的45t龙门吊2台,用电功率为57.5kW的15t龙门吊1台,用电功率为90kW砂浆搅拌机1台,用电功率为400kW的电瓶车充电设备1套,其它交往电瓶机、抽水设备等若干台。
3 总体布置 按招标文件与施工承包合同业主在承包商的盾构施工场内提供10kV双电源的授电点及相关设备(2*2000kVA高压开关站和2*500kVA变压器)。施工场地布置后,若采用双电源移动式开关站,将增加进线柜、计量柜、转换柜等设备,同时增加移动开关站土建投资,预计多增加近百万元投资,根据工程特点、当地供电负荷状况,业主提出采用单电源移动式开关站并要求承包商提出相应用电保证措施。
承包商提出主要措施:(1)通过报纸、电话、上网等手段掌握本施工点所在地区用电供应负载情况,及时做好停电预报工作。(2)合理分配地面、洞内用电负荷,安排施工始发井承包商施工任务完成后移交的1台线路编号为赤沙F15的500kVA的变压器,供地面龙门吊、砂浆搅拌站用,新增加的线路编号为赤沙F22(500kVA+500kVA)移动式开关站作为左右线盾构机掘进和洞内通风、照明、抽水、电焊专用。
(3)配置300kW自发电机1台,在线路停电后保证洞内通风、照明、抽水、电焊使用,并承担小负荷用电应急。(4)盾构机增加1台9m3螺杆式空压机,作为盾构机掘进时保压用(停电也可短暂工作)。
4 电缆敷设 地面开关站由于高低压电缆数量出线较多,且地面上泥浆需及时清理,积水不易疏通,为保证检修方便、运行安全,高低压电缆分别设置电缆沟并采用单支架电缆沟敷设(见图1),电缆至井口则采用PVC管保护并用卡箍固定,在隧洞内,低压电缆布置在人行道一侧,高压电缆则在另一侧。自制圆钢弯钩固定在M24管片连接螺栓上,高低压电缆则在其上悬挂(见图2),低压电缆每200m一段通过低压配电箱连接。
论文有图表不好复制,自己见网页 。
转载请注明出处众文网 » 移动电源毕业设计论文(求集成直流稳压电源的设计论文集成直流稳压电源)