1.毕业答辩时老师会问什么问题
==你是本科还是硕士啊 论文的话应该主要是算法的研究和改进吧……
问题比如:你采用了哪种人脸识别算法 你对这种算法的改进在哪里(你不只要说明改进在哪里 可能还需要做一些实验收集下数据来对比 说明算法在改进后对性能有了提升) 新算法比其他算法好在哪里(还是通过实验收集数据对比一下) 分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求 毕竟图像分析很占空间) 然后是怎样进行优化的 实验采用的样本是哪些(我们当时用的UC Irvine Machine Learning Repository 下面会有CMU Face Images 大家一般都用这个库来作为样本) 怎样对实验结果进行量化比较的(标准是什么)
如果是模式识别的话 还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的) 训练样本采用的什么算法 实验的识别率是多少 算法的性能是不是稳定……
==我想到的都是本科的问题 如果是研究生的话可能还会问的更难
2.毕业论文人脸图像压缩与重建
在图像处理领域中,图像的超分辨率重建技术和(略)个发展已经比较成熟的部分.本文从实际应用的要求出发,对二者的结合作了研究,即对压缩图像进行超分辨率重建. 论文主要做了以下工作:对图像压缩过程中(略)重建算法利用的运动补偿和量化进行了研究,简化并实现了MPEG-4的编码器;研究了空间域的凸集投影(POCS)超分辨率重建算法;实现了在压缩图像的变换域运用凸集投影算法来进行超分辨率重建. 实验证明,基于变换域的凸集投影算法能去除压缩过程带来的量化噪声,取得比传统解压后再进行普通超分辨率重建更好的效果.尤其在压缩比较大的情况下,重建效果更为明显。
3.毕业论文人脸图像压缩与重建
在图像处理领域中,图像的超分辨率重建技术和(略)个发展已经比较成熟的部分.本文从实际应用的要求出发,对二者的结合作了研究,即对压缩图像进行超分辨率重建. 论文主要做了以下工作:对图像压缩过程中(略)重建算法利用的运动补偿和量化进行了研究,简化并实现了MPEG-4的编码器;研究了空间域的凸集投影(POCS)超分辨率重建算法;实现了在压缩图像的变换域运用凸集投影算法来进行超分辨率重建. 实验证明,基于变换域的凸集投影算法能去除压缩过程带来的量化噪声,取得比传统解压后再进行普通超分辨率重建更好的效果.尤其在压缩比较大的情况下,重建效果更为明显。
4.最近要写论文,想问下人脸关键点定位或者人脸对齐主要有哪些应用
目前有很多的人脸关键点定位的算法,比较传统的有ASM、AAM、CLM和一些列改进算法,而目前比较流行的有 ESR、3D-ESR、SPR、LBF、SDM、CFSS等。很多学者刚接触到人脸对齐时,不知道它有什么用处,下面就列举出几个 人脸关键点定位的应用领域:
(1)人脸器官定位、器官跟踪。通过人脸对齐,我们能够定位到人脸的每个部件,提取相应的部件特征。
(2)表情识别。通过人脸对齐后,我们能够利用对齐后的人脸形状分析人脸的表情状态。
(3)性别鉴别。通过人脸对齐,能够对人脸进行性别识别,男女之间的人脸形状有一定的差异性。广东的 ColorReco用人脸关键点技术定制开发了性别识别的SDK。
(4)人脸漫画/素描图像生成。通过人脸对齐后,我们能够进行人脸漫画和素描生成。
(5) 虚拟现实和增强现实。通过人脸对齐后,我们能够做出很多好玩的应用。
(6)人脸老化、年轻化、年龄推断。特征融合/图像增强。通过人脸对齐后,我们能够有效提取人脸特征,并分 析人脸年龄、人脸老化等。