1.数学毕业论文的具体格式
毕业论文是学生时代最重要的一件事,事关能否毕业,而毕业论文的格式又决定了一篇论文的水准,所以我们在做毕业论文时,一定要按正确的毕业论文的格式排版。
第一、构成项目 毕业论文包括以下内容: 封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。
如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。
(2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。
(3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。
这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。
(6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。
4、毕业论文格式编排 第一、纸型、页边距及装订线 毕业论文一律用国家标准A4型纸(297mmX210mm)打印。页边距为:天头(上)30mm,地脚(下)25mm,订口(左)30mm,翻口(右)25mm。
装订线在左边,距页边10mm。 第二、版式与用字 文字、图形一律从左至右横写横排,1.5倍行距。
文字一律通栏编辑,使用规范的简化汉字。忌用繁体字、异体字等其他不规范字。
第三、论文各部分的编排式样及字体字号 (1)文头 封面顶部居中,小二号行楷,顶行,居中。固定内容为“成都中医药大学本科毕业论文”。
(2)论文标题 小一号黑体。文头居中,按小一号字体上空一行。
(如果加论文副标题,则要求:小二号黑体,紧挨正标题下居中,文字前加破折号) 论文标题以下的行距为:固定值,40磅。 (3)作者、学院名称、专业、年级、指导教师、日期 项目名称用小三号黑体,后填写的内容处加下划线标明,8个汉字的长度,所填写的内容统一用三号楷体,各占一行,居中对齐。
下空两行。 (4)内容提要及关键词 紧接封面后另起页,版式和字号按正文要求。
其中,“内容提要”和 “:” 黑体,内容用宋体。上空一行,段首空两格,回行顶格:“关键词”与 “内容提要”间隔两行,段首空两格。
“关键词”和 “:” 用黑体,内容用宋体。关键词通常不超过七个,词间空一格。
(5)目录 另起页,项目名称用3号黑体,居中排列,上下各空一行;内容用小4号仿宋。 (6)正文文字:另起页。
(7)论文标题:用二号黑体加粗,居中排列,上空一行;下标明年级、专业、作者,作者姓名另起一行,四号楷体,居中排列;下空两行接正文。正文文字一般用小四号宋体,每段起首空两格,回行顶格,单倍行距。
(8)正文文中标题 一级标题,标题序号为“一、”与正文字号相同,黑体,独占行,末尾不加标点; 二级标题,标题序号为“(二)”,与正文字体字号相同,独占行,末尾不加标点; 三级以下标题序号分别为“1.”和(1),与正文字体字号相同。为避免与注释相互混淆,不可用“①”。
可根据标题的长短确定是否独占行,若独占行,则末尾不使用标点,否则,标题后必须加句号。每级标题的下一级标题应各自连续编号。
(9)注释:正文中加注之处右上角加数码,形式统一为“①”,同时在本页留出适当行数,用横线与正文分开,空两格后定出相应的注号,再写注文。注号以页为单位排序,每个注文各占一段,用小5号宋体。
引用文章时,注文的顺序为:作者、文章标题、刊物名、某年第几期〈例如 : ①龚祥瑞:《论行政合理性原则》, 载《法学杂志》1987年第1期。);引用著作时,注文的顺序为:作者、著作名称、出版者、某年第几版、页数 ( 例如:② [ 英 ] 威廉·韦德著:《行政法》,楚剑译,中国大百科全书出版社 1997年版,第5页。)
(10)附录 项目名称为小四号黑体,在正文后空两行空两格排印,内容编排参考“示范文本”。
(11)参考文献 项目名称用小四号黑体,在正文或附录后空两行顶格排印,另起行空两格用小四号宋体排印参考文献内容,具体编排方式同注释(参考的著作可不写第几页) 。 (12)页码 首页不编页码,从第二页起,居中编排。
2.数学毕业论文的具体格式
毕业论文是学生时代最重要的一件事,事关能否毕业,而毕业论文的格式又决定了一篇论文的水准,所以我们在做毕业论文时,一定要按正确的毕业论文的格式排版。
第一、构成项目 毕业论文包括以下内容: 封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。
如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。
(2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。
(3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。
这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。
(6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。
4、毕业论文格式编排 第一、纸型、页边距及装订线 毕业论文一律用国家标准A4型纸(297mmX210mm)打印。页边距为:天头(上)30mm,地脚(下)25mm,订口(左)30mm,翻口(右)25mm。
装订线在左边,距页边10mm。 第二、版式与用字 文字、图形一律从左至右横写横排,1.5倍行距。
文字一律通栏编辑,使用规范的简化汉字。忌用繁体字、异体字等其他不规范字。
第三、论文各部分的编排式样及字体字号 (1)文头 封面顶部居中,小二号行楷,顶行,居中。固定内容为“成都中医药大学本科毕业论文”。
(2)论文标题 小一号黑体。文头居中,按小一号字体上空一行。
(如果加论文副标题,则要求:小二号黑体,紧挨正标题下居中,文字前加破折号) 论文标题以下的行距为:固定值,40磅。 (3)作者、学院名称、专业、年级、指导教师、日期 项目名称用小三号黑体,后填写的内容处加下划线标明,8个汉字的长度,所填写的内容统一用三号楷体,各占一行,居中对齐。
下空两行。 (4)内容提要及关键词 紧接封面后另起页,版式和字号按正文要求。
其中,“内容提要”和 “:” 黑体,内容用宋体。上空一行,段首空两格,回行顶格:“关键词”与 “内容提要”间隔两行,段首空两格。
“关键词”和 “:” 用黑体,内容用宋体。关键词通常不超过七个,词间空一格。
(5)目录 另起页,项目名称用3号黑体,居中排列,上下各空一行;内容用小4号仿宋。 (6)正文文字:另起页。
(7)论文标题:用二号黑体加粗,居中排列,上空一行;下标明年级、专业、作者,作者姓名另起一行,四号楷体,居中排列;下空两行接正文。正文文字一般用小四号宋体,每段起首空两格,回行顶格,单倍行距。
(8)正文文中标题 一级标题,标题序号为“一、”与正文字号相同,黑体,独占行,末尾不加标点; 二级标题,标题序号为“(二)”,与正文字体字号相同,独占行,末尾不加标点; 三级以下标题序号分别为“1.”和(1),与正文字体字号相同。为避免与注释相互混淆,不可用“①”。
可根据标题的长短确定是否独占行,若独占行,则末尾不使用标点,否则,标题后必须加句号。每级标题的下一级标题应各自连续编号。
(9)注释:正文中加注之处右上角加数码,形式统一为“①”,同时在本页留出适当行数,用横线与正文分开,空两格后定出相应的注号,再写注文。注号以页为单位排序,每个注文各占一段,用小5号宋体。
引用文章时,注文的顺序为:作者、文章标题、刊物名、某年第几期〈例如 : ①龚祥瑞:《论行政合理性原则》, 载《法学杂志》1987年第1期。);引用著作时,注文的顺序为:作者、著作名称、出版者、某年第几版、页数 ( 例如:② [ 英 ] 威廉·韦德著:《行政法》,楚剑译,中国大百科全书出版社 1997年版,第5页。)
(10)附录 项目名称为小四号黑体,在正文后空两行空两格排印,内容编排参考“示范文本”。
(11)参考文献 项目名称用小四号黑体,在正文或附录后空两行顶格排印,另起行空两格用小四号宋体排印参考文献内容,具体编排方式同注释(参考的著作可不写第几页) 。 (12)页码 首页不编页码,从第二页起,居中编排。
3.本科毕业论文字数一般写多少
一般而言,非211、985学校的本科毕业论文字数在6000-8000左右(工程类需要制图的专业则会超过这个数字),而一些要求较高或者重点学校则要求论文字数在1万左右或以上,总之各个学校在论文字数上的规定都有细微的差异。
一、本科生毕业论文主要内容:
1. 题目 (宋体,小二,居中);
2. 中文摘要(200字以上),关键词;字体:宋体、小四号,字符间距:标准;行距:20磅;
3. 英文摘要,关键词;
4. 目录;
5. 正文;字体:宋体、小四号,字符间距:标准;行距:20磅;
6. 参考文献。期刊内容包括:作者
题名,刊名,年,卷(期):起始页码-结束页码。著作内容包括:作者、编者,文献题名,出版社,出版年份,起止页码。
7. 附件:开题报告和检查情况记录表。
4.论文一般要写多少字
一般而言,专科毕业论文正文字数一般应在5000字以上,非211、985的学校的本科毕业论文正文字数在8000字左右(工程类需要制图的专业则会超过这个数字),但是一些要求较高的学校或者是重点学校则要求论文字数在1万左右或以上。总而言之,各个学校在论文字数上的规定都会有细微的差异。
硕士毕业论文字数一般是3-5万之间,学校不一样,专业不一样,字数也就不一样,一般指导老师都会给出一个大概的字数条件。
扩展资料
要求
1、在文后的参考文献表中,各条参考文献应按其在正文中出现的先后用阿拉伯数字连续排序。注意一定要按在文中出现的顺序编号。
2、文后参考文献表中的中文参考文献请改为中英文对照。
3、文后期刊类、会议论文集中的参考文献表中的英文期刊名称、会议论文集名请写全称。
4、各类参考文献请严格按照“二、各类参考文献写法”中的标点符号写。
5.论文的字数要求是多少
当然是字符数量,为了探讨和掌握论文的写作规律和特点,需要对论文进行分类。由于论文本身的内容和性质不同,研究领域、对象、方法、表现方式不同,因此,论文就有不同的分类方法。
按内容性质和研究方法的不同可以把论文分为理论性论文、实验性论文、描述性论文和设计性论文。
扩展资料
学位申请者为申请学位而提出撰写的学术论文叫学位论文。这种论文是考核申请者能否被授予学位的重要条件。
学位申请者如果能通过规定的课程考试,而论文的审查和答辩合格,那么就给予学位。如果说学位申请者的课程考试通过了,但论文在答辩时被评为不合格,那么就不会授予他学位。
有资格申请学位并为申请学位所写的那篇毕业论文就称为学位论文,学士学位论文。学士学位论文既是学位论文又是毕业论文。
参考资料来源:百度百科-论文
6.数学小论文(字数不少于1500)
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。
我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。
我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。
2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”
这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。
后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。
203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”
我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花。