1.谁能教我经济论文中建立多元线性回归,那些乱七八糟的数据到底是怎
GSJX=1.454-0.732X1-0.147X2-0.128X3-0.149X4
里面的系数是图表中的系数计算出来的
x1x2x3
这些是你采样的统计学数值,根据正态分布方法计算出来的GSJX就是上面的系数带入计算
回归系数就是回归方程中表示自变量x 对因变量y 影响大小的参数。回归系数越大表示x 对y 影响越大,正回归系数表示y 随x 增大而增大,负回归系数表示y 随x增大而减小。
R方通过统计学差值计算
SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值0.01<P<0.05,则为差异显著,如果P<0.01,则差异极显著。一般来说,当P值小于0.05时,就可以推翻原假设。
这个东西一句两句貌似很难说清楚,有什么看着纠结的再问我。
2.如何用spss进行多元回归分析
多元线性回归1.打开数据,依次点击:analyse--regression,打开多元线性回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。
其他方法都是逐步进入的方法。4.等级资料,连续资料不需要设置虚拟变量。
多分类变量需要设置虚拟变量。虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
5.选项里面至少选择95%CI。点击ok。
统计专业研究生工作室原创,请勿复杂粘贴。
3.如何使用SPSS进行多元回归分析
在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型:
其中:b0是回归常数;bk(k=1,2,3,…,n)是回归参数;e是随机误差。
多元回归在病虫预报中的应用实例:
某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。分级别数值列成表2-1。
预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。
预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。
4.如何用spss进行多元回归分析
多元线性回归
1.打开数据,依次点击:analyse--regression,打开多元线性回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。
3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。
4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
5.选项里面至少选择95%CI。
点击ok。
统计专业研究生工作室原创,请勿复杂粘贴
5.怎样用SPSS进行多元线性回归
第一节 Linear过程8.1.1 主要功能 调用此过程可完成二元或多元的线性回归分析。
在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。返回目录 返回全书目录8.1.2 实例操作 〔例8.1〕某医师测得10名3岁儿童的身高(cm)、体重(kg)和体表面积(cm2)资料如下。
试用多元回归方法确定以身高、体重为自变量,体表面积为应变量的回归方程。儿童编号 体表面积(Y) 身高(X1) 体重(X2) 12 34 56 78 910 5.3825.2995.3585.2925.6026.0145.8306.1026.0756.411 88.087.688.589.087.789.588.890.490.691.2 11.011.812.012.313.113.714.414.915.216.08.1.2.1 数据准备 激活数据管理窗口,定义变量名:体表面积为Y,保留3位小数;身高、体重分别为X1、X2,1位小数。
输入原始数据,结果如图8.1所示。图8.1 原始数据的输入8.1.2.2 统计分析 激活Statistics菜单选Regression中的Linear。
项,弹出Linear Regression对话框(如图8.2示)。从对话框左侧的变量列表中选y,点击Ø钮使之进入Dependent框,选x1、x2,点击Ø钮使之进入Indepentdent(s)框;在Method处下拉菜单,共有5个选项:Enter(全部入选法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)。
本例选用Enter法。点击OK钮即完成分析。
图8.2 线性回归分析对话框 用户还可点击Statistics。钮选择是否作变量的描述性统计、回归方程应变量的可信区间估计等分析;点击Plots。
钮选择是否作变量分布图(本例要求对标准化Y预测值作变量分布图);点击Save。钮选择对回归分析的有关结果是否作保存(本例要求对根据所确定的回归方程求得的未校正Y预测值和标准化Y预测值作保存);点击Options。
钮选择变量入选与剔除的α、β值和缺失值的处理方法。8.1.2.3 结果解释 在结果输出窗口中将看到如下统计数据:* * * * M U L T I P L E R E G R E S S I O N* * * * Listwise Deletion of Missing Data Equation Number 1 Dependent Variable..Y Block Number 1. Method: Enter X1 X2 Variable(s) Entered on Step Number 1.. X2 2.. X1 Multiple R .94964 R Square .90181 Adjusted R Square .87376 Standard Error .14335 Analysis of Variance DF Sum of Squares Mean Square Regression 21.32104 .66052 Residual7 .14384 .02055 F = 32.14499 Signif F = .0003------------------ Variables in the Equation ------------------ Variable B SE B Beta T Sig T X1.068701 .074768 .215256 .919 .3887 X2.183756 .056816 .757660 3.234 .0144(Constant) -2.856476 6.017776-.475 .6495 End Block Number1 All requested variables entered.结果显示,本例以X1、X2为自变量,Y为应变量,采用全部入选法建立回归方程。
回归方程的复相关系数为0.94964,决定系数(即r2)为0.90181,经方差分析,F=34.14499,P=0.0003,回归方程有效。回归方程为Y=0.0687101X1+0.183756X2-2.856476。
本例要求按所建立的回归方程计算Y预测值和标准化Y预测值(所谓标准化Y预测值是指将根据回归方程求得的Y预测值转化成按均数为0、标准差为1的标准正态分布的Y值)并将计算结果保存入原数据库。系统将原始的X1、X2值代入方程求Y值预测值(即库中pre_1栏)和标准化Y预测值(即库中zpr_1栏),详见图8.3。
图8.3 计算结果的保存 本例还要求对标准化Y预测值作变量分布图,系统将绘制的统计图送向Chart Carousel窗口,双击该窗口可见下图显示结果。图8.4 对标准化Y预测值所作的正态分布图。