1.求一篇4自由度工业机械手的毕业设计论文
应用实例及精度分析 摘要测量三个自由度机械臂:测量臂的三个自由度,沿X测量对象,Y,Z三个坐标轴平移,只有位置与运动部件的测量跟踪。
关节测量臂是由安装在各关节的相对运动的传感器测得,并因此间接地实现端部执行器的位置测量。 因此,这个问题属于直接的问题机器人运动学。
关键词:测量;自由度;姿势;并联机床,传感器,信号,精密 1 应用实例飞速发展,机器性能要求比较 高。传统该机采用了一系列嵌套的堆叠体,臃肿,以及由于一系列的错误 链的积累,不利于提高精度,传统的四坐标加 较窄的工作机技术,也很难实现任何额外的表面处理,以及 5轴加工工具是非常昂贵的和低的速度。
因此,结构 刚度,承载比,定位精度高,结构紧凑和网上 引起了学者们的机器的注意,水货机因此而诞生。 提出了使用额外的实时测量运动 平台定位精度直接测量机制。
其基本思想是基于额外测量的固定平台和平台之间的身体移动量的测量运动运动平台的运动,通过测量安装时驱动<运动平台 创造的运动特性由药代动力学建模运输传感器机制/>移动平台获得的显示解决方案的地位。当测量 解决前沿速度,满足实时控制的要求,你可以 受益的实时反馈到机床精度补偿和控制。
基于上述想法,以建立一个并行机位置测量系统 机器切割力和变形关节间隙和其他错误的部分排除,以提高定位精度 机。在三自由度串联机构都采用 副然后转向运动是非常灵活的,使用移动副的,往往是需要锻炼,尤其是靠近基地的运动副更是如此。
测量仪由一系列的三自由度机构,罚款密码板的每个回合动关节,以衡量不同之间的角度。其端件由一个界面元素和机器人执行器连接 。
当机床运动平台变化的测量位置,测量仪器 片的端部移动与平台的运动,从而导致米关闭 两个相邻杆之间的角度的每个部分从变精致的密码通过计算卡插入电脑处理软件测得的相对 角落的变化信号,通过运行 运动学正解的实时显示测试程序移动部件的当前位置 量每块板,为了实现位置测量。 2 精度分析主要影响的机械机器人的身体部位,安装误差教育部 零部件制造误差,整机装配误差和机器人的精度。
此外,温度,所产生的驱动杠杆作用的操作力变得 形传输错误,控制系统错误等。测定和补偿这些误差 是在实践中是必不可少的。
2.1测试的基本概念 错误在任何测试过程中,无论多么完美的正方形 测试如何准确的测试方法和装置都不可避免地产生测试 误差,测试结果不能绝对准确。因此,为了测量与相应的精度得到 测试结果,必须正确估计的测量误差,该测试结果的可靠性。
测试误差是测量值与真实值之间的差额,即 △X = X-X0 公式:△x ---定义测试误差; x - - 测量值; X0 ---真正的价值。 其中测得的真实大小本身的真正价值了。
2.2基本类型的测试误差 1)数学表达式错误划分--- 相对绝对误差和误差; - 工具 2)源错误的划分和错误的错误 可怜方法,根据错误的划分---发生系统错误,梯度 误差,随机误差和粗差法 3); 4 )按条件除法---基本误差和附加误差; 5)除以测得的速度误差---静态和动态误差 较差。误差误差间接测量过程中直接测量误差 行的基础上。
物理量不能直接测量,但必须由一定数目的计算出的能量 直接测量的量来确定。由于直接测量 难免产生错误,从这些直接测量的结果包含错误 计算不可避免地包含错误。
间接测量法是 世代的关系的算术平均值的函数的测得的各种参数的要求的直接结果,其结果可以得到 间接测量。 间接测量通常有两个问题:一个是已知的误差测量 寻求间接测量误差,即误差变量从 著名寻求错误的邮件数,以及另一种是间接测量一个给定的误差值,查找每个直接测量然后允许的误差 找到自变量的误差已知的功能。
发现并消除系统误差的2.4 在一定的测试条件,测试方法和目标站 米,通常在测试之前,始终由个人或小的误差存在系统误差因素在固体 法律发生多显著给出所造成的测试系统的影响。通常应在测试前的分析和实验,以确定 的影响是从淘汰的原因,或给予纠正 测量。
若使系统误差减小到其随机误差 的大小相当,可不必单独处理的系统错误,并统一用 作为错误处理的机器。 然而,在实践中系统误差无法完全消除,但也有可能是在测量一些更显著系统错误 差。
特别是,系统错误也隐藏在随机误差,所以也就 关键的问题是如何找到数据来检验是否存在系统错误 差,只有解决了这个问题,它可能要进一步企图消灭此外或更正。 系统误差的两个固定值和变量值??,他们影响各不相同。
值系统误差影响重复测量只的平均值,而 不影响均方根误差。它不仅会导致随机误差分布曲线在转变 位置,而不影响其分布与实际点Bufan 周长。
对于不同的系统误差,由于每个上的大小和方向的 效果的测量图像数据是不一样的,而且还具有固定法,不是偶然波动。 如果在系统误差值显著的变化,不仅会影响重 复杂的多次测量的平均值,而且会影响它的每一个固定的规则 残差和均方根错误。
因此,它不仅会改变随机误差的分布 位置,也使变形的分布,这将使它 残差不具有破坏性,而且还影响到实际分布。因此,法应提供以消除其原因,或取得。
2.一般以“机械手”为毕业论文题目是什么
西门子PLC在机械手控制中的应用 论文编号:ZD296 论文字数:11309,页数:23 内容摘要 可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用了可编程序的存储器,用来在其内部存储执行逻辑运算,顺序控制,定时,计数和算术操作等面向用户的指令,并通过数字式或模拟式的输入/输出,控制各种类型的机械或生产过程。使用PLC控制比使用接触器继电器控制更加简单、稳定、易维修,并可保证系统运行的经济性和智能化。 本课题以西门子PLC为核心,针对洗涤房2台机械手工程,设计了机械手自动控制系统。首先根据系统要求,对PLC进行了选型,确定了PLC系统的输入输出,画出了输入输出接线方式,同时对系统的软件进行了设计。 本系统为机械手设计提供了一个切实可行的方案,该方案具有性能可靠、生产效率高的特点。系统的构建思想和方法对于其它自动化系统也有一定的借鉴意义。 关键词:机械手;可编程控制器PLC;顺序控制 目录 内容摘要 I 1 引 言 1 1.1 机械手原理 1 1.2 工业机械手各部分功能 2 1.3 机械手在国内外发展状况 4 1.4 本文研究的主要内容 5 2 系统硬件控制电路设计 6 2.1 搬运机械手控制及要求 6 2.2 可编程控制器的选型 7 2.3 控制系统I/O端口分配 11 2.4 电动机电气线路 13 3 系统软件设计 15 3.1 软件方案 15 3.2 系统主程序设计 16 4 结论 20 参考文献 21 以上回答来自: /41-6/6545.htm
记得采纳啊
3.plc控制机械手的论文
PLC在自动化生产机械手中的应用 摘要:文章介绍了PLC在气缸生产线组装单元机械手中的应用。
就机械手的结构原理、控制系统的硬件及软件 作了详细的分析和研究。关键词:生产线;机械手; PLC0 前言 机械手在自动化生产线上具有广泛的用途,它可以 用来搬运货物、运送材料、传送工件等。
本文主要介绍 PLC在气缸生产线组装单元机械手中的应用。该机械 手由PLC控制气缸驱动,其任务是把组成气缸的各元 件,如缸体、活塞、弹簧、缸盖分别送到组装工位,经组装 后再把成品送到分检工位分检。
该生产线原采用5个 自由度、步进电机驱动的机器人来完成此工作。但该机 器人控制复杂、价钱昂贵、运行速度较慢。
改用由PLC 控制的气动机械手来代替,经试验满足生产线对该部件 的要求,并且控制方便、结构简单、价格便宜、可靠性高。1 结构原理 该机械手如图1所示,由机身、机械臂、手爪、气源 装置及PLC控制部分组成。
共有三个自由度,动作由 气缸驱动,PLC控制,可以完成大臂的摆动、伸展,小臂 的伸缩,及抓取工件等动作。能准确地抓取工件,送到 指定的工位。
2 气动系统设计 该生产线组装单元机械手气动系统如图2所示 A、B、C、D和E缸分别是大臂摆动气缸、大臂水平伸缩 气缸、小臂垂直伸缩气缸、手爪气缸及制动气缸。分别 由三位五通电磁阀、二位五通电磁阀和二位三通电磁 阀控制气缸动作。
各种运动速度都可调节。摆动气缸 A摆动角度为270o,有六个工作位置。
摆动气缸转动 时,制动气缸E松开,解除制动。其它气缸动作时,制 动气缸处于制动状态,保证在工作过程中定位准确。
3 运行流程 该机械手与工作位置的关系如图3所示。大臂摆 动角度为270°,分别经过缸体工位、活塞工位、弹簧工 位、缸盖工位、组装工位和分检工位。
机械手原始工作 置位在缸体工位,其动作流程如图4所示。起动开始,首先机械手从缸体工位抓取缸体送到组装工位,再返 回到活塞工位,抓取活塞送到组装工位,又回到弹簧工 位抓取弹簧送到组装工位,同样返回到缸盖工位抓取 缸盖送到组装工位。
送料结束后,机械手在组装工位 等待,气缸在组装工位进行组装。在组装工位完成缸 体的组装后,机械手抓取成品气缸送到分检工位进行 检测分装,然后返回原始位置进行下一个气缸组装的 工作循环。
这就是一个完整的气缸组装过程。组装一 个气缸的全过程包括9步,机械手完成四个半的小循 环动作。
如图4中①和②、③和④、⑤和⑥、⑧和⑨各 组成一个完整的小循环动作,⑦只是半个小循环。机 械手完成一个完整的小循环动作顺序如图5所示。
前 三个小循环摆动气缸A顺时针转动时,不是回到原始 位置,而是分别到活塞工位、弹簧工位、缸盖工位分别 抓取这三个工件。第⑦步机械手抓取缸盖送到组装工 位后停止,只有半个小循环;第四个小循环是第⑧和⑨ 步,从组装工位抓取成品气缸送到分检工位,然后再返 回到原始位置。
其中,RUN、STOP—分别为运行和停止按钮; A0、A1、A2、A3、A4、A5—分别是A缸摆动到六个 不同工位的位置检测传感器信号; B1、C1、D1—分别是B缸和C缸伸出、D缸抓住工 件时的位置传感器信号; G0、G1、G2、G3—分别为缸体、活塞、弹簧、缸盖四 工件送到其工位时的检测传感器信号; J—为一个气缸组装完成后的发出信号; Y1、Y2、Y3、Y4、Y5、Y6—分别为控制A、B、C、D四 个气缸电磁阀的PLC输出信号。5 PLC软件程序设计 本程序采用西门子STEP7 V5. 0编程软件在计算 机上进行编程,根据需要可用梯形逻辑编程语言(LAD)、功能块编程语言(FBD)或语句表编程语言(STL)来编程,这三种编程语言之间可相互转换。
编 辑好的程序下载到可编程控制器进行工作。也可以对 程序在线调试。
在线调试时,梯形图上可仿真实际信 号、元件、设备的通断,根据仿真结果可对软件或硬件 中的错误、不足之处进行调整、改进。该机械手PLC 梯形逻辑图如图7所示。
6 结束语 该机械手采用PLC控制,完全满足生产线对该单 元的要求,且结构简单、性能可靠、组装灵活、价格便 宜、操作方便。参考文献:[1] SIEMENS SIMATIC S7编程手册[Z]. 1996.[2] SIEMENS SIMATIC STEP7梯形逻辑手册[Z]. 1996.[3] FiuidSIM Pneumatics操作手册[Z].[4] WernerDeppert / kurt Stoll著.气动技术·低成本综合 自动化(德)[M].北京:机械工业出版.。
4.课题十 机械手控制设计(1人)
你好朋友,我正好有你要的毕业设计,我做的设计就是这个!机械手的控制设计!免费的给你!发一点你看看啊!第一章 引 言 1.1 工业机械手概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人应用情况,是一个国家工业自动化水平的重要标志。生产中应用机械手可以提高生产的自动化水平,可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。
因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用。机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。
气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。其主要特点是:介质李源极为方便,输出力小,气动动作迅速,结构简单,成本低。
但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作。气动技术有以下优点: (1)介质提取和处理方便。
气压传动工作压力较低,工作介质提取容易,而后排入大气,处理方便,一般不需设置回收管道和容器:介质清洁,管道不易堵存在介质变质及补充的问题. (2)阻力损失和泄漏较小,在压缩空气的输送过程中,阻力损失较小(一般不卜浇塞仅为油路的千分之一),空气便于集中供应和远距离输送。外泄漏不会像液压传动那样,造成压力明显降低和严重污染。
(3)动作迅速,反应灵敏。气动系统一般只需要0.02s-0.3s即可建立起所需的压力和速度。
气动系统也能实现过载保护,便于自动控制。 (4)能源可储存。
压缩空气可存贮在储气罐中,因此,发生突然断电等情况时,机器及其工艺流程不致突然中断。 (5)工作环境适应性好。
在易燃、易爆、多尘埃、强磁、强辐射、振动等恶劣环境中,气压传动与控制系统比机械、电器及液压系统优越,而且不会因温度变化影响传动及控制性能。 (6)成本低廉。
由于气动系统工作压力较低,因此降低了气动元、辅件的材质和加工精度要求,制造容易,成本较低。传统观点认为:由于气体具有可压缩性,因此,在气动伺服系统中要实现高精度定位比较困难(尤其在高速情况下,似乎更难想象)。
此外气源工作压力较低,抓举力较小。虽然气动技术作为机器人中的驱动功能已有部分被工业界所接受,而且对于不太复杂的机械手,用气动元件组成的控制系统己被接受,但由于气动机器人这一体系己经取得的一系列重要进展过去介绍得不够,因此在工业自动化领域里,对气动机械手、气动机器人的实用性和前景存在不少疑虑。
1.2 气动机械手的设计要求 1.2.2 课题的设计要求本课题将要完成的主要任务如下: (1)机械手为通用机械手,因此相对于专用机械手来说,它的适用面相对较广。 (2)选取机械手的座标型式和自由度。
(3)设计出机械手的各执行机构,包括:手部、手腕、手臂等部件的设计。为了使通用性更强,手部设计成可更换结构,不仅可以应用于夹持式手指来抓取棒料工件,在工业需要的时候还可以用气流负压式吸盘来吸取板料工件。
(4)气压传动系统的设计本课题将设计出机械手的气压传动系统,包括气动元器件的选取,气动回路的设计,并绘出气动原理图。 (5)机械手的控制系统的设计本机械手拟采用可编程序控制器(PLC)对机械手进行控制,本课题将要选取PLC型号,根据机械手的工作流程编制出PLC程序,并画出梯形图。
1.3 机械手的系统工作原理及组成机械手的系统工作原理框图如图1-1所示。 图1-1机械手的系统工作原理框图 机械手的工作原理:机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。
在PLC程序控制的条件下,采用气压传动方式,来实现执行机构的相应部位发生规定要求的,有顺序,有运动轨迹,有一定速度和时间的动作。同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。
位置检测装置随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置. (一)执行机构包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。 1、手部即与物件接触的部件。
由于与物件接触的形式。
5.搬运机械手及控制设计 的毕业设计
第一章 绪 论 1
1.1 前 言 1
1.2 搬运机械手在生产中的应用 1
1.2.1 建造旋转零件(转轴、盘类、环类)自动线 2
1.2.2 在实现单机自动化方面 2
1.3 搬运机械手的结构 2
第二章 搬运机械手的总体设计方案 4
2.1 设计方案的拟定 4
2.1.1 熟悉该产品的加工工艺 4
2.1.2 收集资料 5
2.2 基本参数的确定 5
2.2.1 抓取重量 5
2.2.2 工作时间的确定 5
2.2.3 根据工艺要求确定参数 6
2.2.4 确定最大活动范围与速度 6
2.2.5 确定定位精度 7
2.3 机构形式的选择 7
2.4 驱动源的选择 8
2.5 控制系统的选择 8
2.6 搬运机械手的自由度与坐标形式选择 9
2.7 本次设计的方案确定 12
2.7.1 确定机械手的规格、坐标形式及自由度 12
2.7.2 规格参数 12
2.7.3 总体布置 13
第三章 搬运机械手的手部设计 14
3.1 手部设计基本要求 14
3.2 手部结构 14
3.3 选择手爪的类型及夹紧装置 15
3.4 手指回转型手部及其受力分析 15
3.5 夹紧力及驱动力的计算 17
3.6 弹簧的设计计算 17
第四章 腕部的设计计算 21
4.1 腕部设计的基本要求 21
4.2 腕部的结构以及选择 21
4.2.1 典型的腕部结构 21
4.2.2 腕部结构和驱动机构的选择 21
4.3 腕部的设计计算 21
4.3.1 腕部设计考虑的参数 21
4.3.2 腕部的驱动力矩计算 21
4.3.3 腕部驱动力的计算 21
4.3.4 液压缸盖螺钉的计算 21
4.3.5 动片和输出轴间的连接螺钉 24
第五章 臂部的设计及有关计算 25
5.1 臂部的设计要求 25
5.2 手臂的典型机构以及结构的选择 26
5.2.1 手臂的典型运动机构 26
5.2.2 手臂运动机构的选择 26
5.3 手臂直线运动的驱动力计算 26
5.3.1 手臂摩擦力的分析与计算 27
5.3.2 手臂惯性力的计算 28
5.3.3 密封装置的摩擦阻力 28
5.4 液压缸工作压力和结构的确定 28
第六章 机身的设计计算 30
6.1 机身的整体设计 30
6.2 机身回转机构的设计计算 30
6.3 机身升降机构的计算 33
6.3.1 手臂偏重力矩的计算 33
6.3.2 手臂做升降运动的液压缸驱动力的计算 34
6.4 轴承的选择分析 35
第七章 液压系统设计 37
第八章 支撑角铁的加工工艺 39
总结 40
参考文献 41
致谢 42
6.求 plc 机械手 毕业设计 (三菱)
我有
毕业设计液压 机械手的设计 三菱 PLC很好
1、本课题所涉及的问题在国内(外)的研究现状综述
工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。
国外机器人领域发展近几年有如下几个趋势:
1. 工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。
2. 机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。
3. 工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。
4. 虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。
5. 机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。
我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国已安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模化设计,积极推进产业化进程。
本次设计的液压传动机械手根据规定的动作顺序,综合运用所学的基本理论、基本知识和相关的机械设计专业知识,完成对机械手的设计,并绘制必要装配图、液压系统图、PLC控制系统原理图。机械手的机械结构采用油缸、螺杆、导向筒等机械器件组成;在液压传动机构中,机械手的手臂伸缩采用伸缩油缸,手腕回转采用回转油缸,立柱的转动采用齿条油缸,机械手的升降采用升降油缸,立柱的横移采用横向移动油缸;在PLC控制回路中,采用的PLC类型为FX2N,当按下连续启动后,PLC按指定的程序,通过控制电磁阀的开关来控制机械手进行相应的动作循环,当按下连
续停止按钮后,机械手在完成一个动作循环后停止运动。
本设计拟开发的上料机械手可在空间抓放物体,动作灵活多样,可代替人工在高
温和危险的作业区进行作业,可抓取重量较大的工件。
Q 348414338
7.求plc 机械手 毕业设计 (三菱)
我有 毕业设计液压 机械手的设计 三菱 PLC很好 1、本课题所涉及的问题在国内(外)的研究现状综述 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 国外机器人领域发展近几年有如下几个趋势: 1. 工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。
2. 机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。
3. 工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。 4. 虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。
5. 机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。
我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国已安装的国产工业机器人约200台,约占全球已安装台数的万分之四。
以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模化设计,积极推进产业化进程。
本次设计的液压传动机械手根据规定的动作顺序,综合运用所学的基本理论、基本知识和相关的机械设计专业知识,完成对机械手的设计,并绘制必要装配图、液压系统图、PLC控制系统原理图。机械手的机械结构采用油缸、螺杆、导向筒等机械器件组成;在液压传动机构中,机械手的手臂伸缩采用伸缩油缸,手腕回转采用回转油缸,立柱的转动采用齿条油缸,机械手的升降采用升降油缸,立柱的横移采用横向移动油缸;在PLC控制回路中,采用的PLC类型为FX2N,当按下连续启动后,PLC按指定的程序,通过控制电磁阀的开关来控制机械手进行相应的动作循环,当按下连 续停止按钮后,机械手在完成一个动作循环后停止运动。
本设计拟开发的上料机械手可在空间抓放物体,动作灵活多样,可代替人工在高 温和危险的作业区进行作业,可抓取重量较大的工件。 Q 348414338。
8.三菱PLC机械手毕业设计
机械手的设计199 双击自动滚屏 文章来源:一流设计吧 发布者:16sheji8 发布时间:2008-11-16 09:30:45 阅读:892次 第一章 引 言机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。
不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。
因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。
工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。
在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。
1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。
它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。
第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。
工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。
这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的[1] [2] 下一页 本文来自: 一流设计吧() 详细出处参考: /onews.asp?id=1688。
9.plc控制机械手的发展方向
机械手控制系统是伴随着机械手(机器人)的发展而进步的。
机械手是在早期出现的古代机器人基础上发展起来的,机械手研究始于20世纪中期,随着计算机和自动化技术的发展,特别是1946年第一台数字电子计算机问世以来,计算机取得了惊人的进步,向高速度、大容量、低价格的方向发展。同时,大批量生产的迫切需求推动了自动化技术的进展,又为机器人和机械手控制系统的开发奠定了基础。
另一方面,核能技术的研究要求某些操作机械代替人处理放射性物质。在这一需求背景下,美国于1947年开发了遥控机械手控制系统和遥控机械手,1948年又开发了机械式的主从机械手控制系统和机械手。
机械手控制系统首先是从美国开始研制的。1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。
该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人控制系统。
现有的机器人控制系统差不多都采用这种控制方式。1958年美国联合控制公司研制出第一台机械手铆接机器人控制系统。
作为机器人产品最早的实用机型(示教再现)是1962年美国AMF公司推出的“VERSTRAN”和UNIMATION公司推出的“UNIMATE”。这些工业机器人和相关控制系统主要由类似人的手和臂组成它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
机械手控制系统经历了以下几个阶段:机械手完成放射源转运年代、化工产品垛机械手年代、工业用机械手兴起和发展年代。 随着汽车行业和塑胶行业的发展,西欧、日本、苏联和中国等地域机械手及其控制系统也开始百花争放。
尤其注塑机机械手,发展更为迅猛,应用非常普遍,其控制系统经过几十年的发展,现在已经趋于成熟和完善。 机械手控制系统的流派及品牌(塑胶) 注塑机机械手流派控制系统可以按地域划分为欧美类,日本类,中国类。
欧美和日本发展较早,技术相对较为完善。国产机械手控制系统起初主要是引进国外,但近一二十年来中国在这一方面的开发研究生产可谓是突飞猛进,如今国产机械手控制系统已逐步成熟,且国产价格相对比较低。
中国的有台湾天行、大陆华成工控,欧洲西格玛泰克、KEBA、日本星机和哈默。 机械手控制系统的种类是根据硬件的不同而加以分类的,主要有斜臂、横走,按驱动方式可分为气动、变频、伺服。
每个大类又有数个小种,而不同的小种又因不同的动作程序而不同。 斜臂机械手控制系统用于500T以下注塑机,动作程序有二三十套,最高距离精度可达到0.05mm,横走机械手控制系统用于1600T内注塑机动作程序有四五十套,最高距离精度可达到0.05mm,而超大型注塑机则需配专门的控制系统 。
转载请注明出处众文网 » 机器手的制作毕业论文(求一篇4自由度工业机械手的毕业设计论文)