1.谁能提供几篇数学建模论文范文(附带原题)
数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。
强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。
本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。
数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。
如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。
必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。
可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。
对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。
要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。
数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。
结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。
有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,。
2.帮忙给想几个数学建模的题目啊!!
A题 生产安排 某工厂生产三种标准件A,B,C,它们每件可获利分别为3、1.5、2元,若该厂仅生产一种标准件,每天可生产A,B,C分别为800,1200,1000个,但A种标准件还需某种特殊处理,每天最多处理600个。
B种标准件每天至少生产200个。 (1)该厂应该如何安排生产计划,才能使得每天获利最大?试建立一般数学模型; (2) 针对实例,求出此问题的解。
B题 植树问题 某小组有男生6人,女生5人,星期日准备去植树。根据以往经验,男生每人每天平均挖坑20个,或栽树30株,或给已栽树苗浇水25株;女生每人平均每天挖坑10个,或栽树20株,或给树苗浇水15棵。
(1)试建立一般数学模型,该模型能合理安排、组织人力,使植树树木最多(注:挖坑,栽树,浇水配套,才称为植好一棵树); (2)针对实例,求出此问题的解。 C题 火车弯道缓和曲线问题 火车驶上弯道时,根据力学原理,会产生离心力F,在轨道的直道与弯道(圆弧)的衔接部,列车受到的离心力由零突变到F,会损坏线路和车辆,并使乘车人感到不适,甚至发生危险。
为此火车轨道在弯道处采取“外轨超高”的办法,即把弯道上的外轨抬高一定高度,使列车倾斜,这样产生的向心力抵消部分离心力,以保证列车安全运行。为使等高的直线轨道与外轨超高的圆弧平缓衔接,同时避免离心力的突然出现,要在弯道与直道间加设一段曲线,以使列车受到的离心力从零均匀地增大到F,外轨超高也从零逐渐增大到h。
所加曲线称为缓和曲线。 现有一处铁路弯道,原转弯半径R=400m,适应列车时速 120km∕h。
由于火车提速,要求将此弯道改为适应列车时速200 km∕h,并要求将原长200 m的缓和曲线一并进行改造。试讨论下面问题:。
3.数学建模优秀论文
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入 、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是 ,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立 的全过程就称为 。目录 背景数学 的意义数学建模 应用 准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用 起源进入 大学 在中国 大学生 章程(2008年) 第四届 数学建模资料竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书 数学建模题目两项题 四项题 数学建模相关数学建模的意义 数学建模经验和体会 最新进展 数学建模应当掌握的十类算法背景 数学 数学建模 数学建模的意义 数学建模 模型 过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用 起源 进入 大学 在中国 大学生 全国大学生 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书 数学建模题目 两项题 四项题 数学建模相关 数学建模的意义 数学建模经验和体会 最新进展数学建模应当掌握的十类算法展开 编辑本段背景 数学 近半个多世纪以来,随着 的迅速发展,数学的应用不仅在工程技术、等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代 的重要组成部分。
数学建模 数学模型(Mathematical Model)是一种模拟,是用 、数学式子、程序、图形等对实际课题 的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用 在科技和 解决哪类实际问题,还是与其它学科相结合形成 ,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。
数学建模和 在 的作用可谓是 。 数学是研究 和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。
数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从 以来,随着 的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在 这个 ,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的 、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。
培养学生 的意识和能力已经成为 的一个重要方面。编辑本段数学建模的意义 数学建模 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模就是用 描述实际现象的过程。这里的实际现象既包涵具体的 比如 现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。
这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让 家(指只懂数学不懂数学在实际中的应用的 )变成 ,,甚至 等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽 式存在的,但它和真实的事物有着本质的区别。
要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可 ,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用 描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
模型 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立 的过程,是把 的实际问题简化、抽象为合理的数学结构的过程。
要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的 ,建立起反映实际问题的 ,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的 ,敏锐的 和想象力,对实际问题的浓厚兴趣和广博的知识面。
数学建模是 与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学 转化的主要途径,数学建模在 发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次 ,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛。
4.大学生数学建模如何选题
我参加过两次,都当队长的,选题首先看你队伍里面成员专业,物理,化学,生物,建筑,等等,可以优先考虑相关主题的题目。
没有擅长统计数据处理的人在的话,可以考虑避开大数据量的题目,反之可以优先。没有会用Matlab、lingo、C的队员的话,注意避开最优化方案设计、调度方案设计以及计算繁杂手工不可能实现的题目(不过说实话队里没人懂编程基本已经寸步难行了)。
要是队伍里没有任何人有突出特长,那最好做最有开放性,最让你不能确定要你具体做什么东西的题(有的新手队伍往往去碰看起来最简单明了的题,结果肯定是什么奖都拿不了)。上面是原则,除此之外具体选题时候记得花一两个钟头对所有可以选的题搜集资料,大家讨论一下,再确定,不要上手就开始闷头钻研。
还有切忌中途换题,切忌兵分两路同时做两个题目。
5.大学生数学建模如何选题
我参加过两次,都当队长的,选题首先看你队伍里面成员专业,物理,化学,生物,建筑,等等,可以优先考虑相关主题的题目。没有擅长统计数据处理的人在的话,可以考虑避开大数据量的题目,反之可以优先。没有会用Matlab、lingo、C的队员的话,注意避开最优化方案设计、调度方案设计以及计算繁杂手工不可能实现的题目(不过说实话队里没人懂编程基本已经寸步难行了)。要是队伍里没有任何人有突出特长,那最好做最有开放性,最让你不能确定要你具体做什么东西的题(有的新手队伍往往去碰看起来最简单明了的题,结果肯定是什么奖都拿不了)。
上面是原则,除此之外具体选题时候记得花一两个钟头对所有可以选的题搜集资料,大家讨论一下,再确定,不要上手就开始闷头钻研。还有切忌中途换题,切忌兵分两路同时做两个题目。
转载请注明出处众文网 » 大学生数学建模毕业论文题目(谁能提供几篇数学建模论文范文(附带原题))