1.小学数学论文
数学发展史 此书记录了世界初等数学的发展与变迁。
可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。
是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。
从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。
通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。
从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。
数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。
且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。
它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。
其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。
于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。
二、符号的出现 加减乘除〈+、-、*(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。
1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。
1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(*、·) 乘号“*”,英国数学家奥屈特于1631年提出用“*”表示相乘。
英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。
另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“*”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。
3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。
符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。
至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。
1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。
在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。
注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5。
2.小学数学论文
给你分享一篇原创的:
小学数学教育,快从计算中摆脱出来
时至今日,离开小学数学很多年后,很多人依旧对小学数学中甲乙相遇的难题心有余悸,仔细回忆,这种题在小学应用题中十分常见,在奥数考试中更是出卷人的宠儿,可能很多人会认为这种类型的题目可以代表中国小学数学的教学观点,然而经过很多人多年的探究,如今小学数学教育文化,正与这种类型的题目背道而驰。
自古以来,中国人的计算能力远超国外,圆周率的计算也比国外早近千年,对于数学方面,中国人一直用自己的计算能力解决问题。这要归功于中国人独有的思维模式,对于数学方面,中国人期望得到一个准确的结果,他们也习惯忽略复杂的证明过程,依照直觉推动数学的发展。长期以来,中国和数学有关的工作者都具备了超强的计算能力,发明的九九乘法表更是让国外组团来考察。或许我们可以为我们独有的能力自豪一番,因为中国的数学从来都是用来解决问题的,而不是研究为什么。
庆幸之中,我们却突然发现,在中国人越来越把计算等同于数学时,这种自古以来的思维模式,原来从小学数学中就已经存在。
在中国的小学,数学是这样被安排的:10以内加减法,10以上20以内加减法,100以内加减法,循序渐进,把计算融进整个教育之中。对比国外,想必很多人听过一个故事,说国外一家家长因为老师教其孩子算了个加法而将其告上法庭,理由是扼杀了孩子的想象力。看似荒谬的故事其实映射的小学数学中外的区别。
在国外的小学,老师通常只会告诉孩子们某件食物数量的多少,而不会要求他们对此加减乘除。除此之外,老师会把某个数用坐标的形式表示出来,或者是把这个数和计算机中的某个知识联系起来。
由此我们可以看出,中国小学数学注重计算,国外小学数学注重逻辑。
这是个模糊的概念,很多人会想说,连计算都不会,哪里谈逻辑。其实逻辑根本和计算不挨边。因此,中国小学数学会出现很多小朋友用手指辅助计算的情形,而国外会因为一个2+2的问题让小朋友做无数个实验。这些就是中国小学数学与外国小学数学的区别。那么究竟那种方式才适合数学的发展,究竟中国应该选择哪种方式来让中国的小学教育更加的完善?
答案是显而易见的,再回到甲乙相遇的问题上,甲何时出发,乙何时出发,速度如何,刚开始距离如何,等等问题,都是一个个有关逻辑的思维导图。这种问题让小学数学的教学充满了逻辑性,让小学生学会思考一些问题。这是中国小学数学教学所需要的。由于国家对工业发展的大力需求,数学的计算一直被国人看作是十分重要的一件事,在这之中往往忽视很多逻辑问题。但随着科技的发展,计算慢慢被科技所代替,如果中国数学从小学开始还是一直注重学生的计算,那么以后中国的数学领域,将会培养出一批机器人。
转向逻辑教学的道路肯定是不平整的,毕竟这种注重计算的教学模式已经根深蒂固很多个年头,想要一时改变,突兀地转向逻辑教学,确实不太实际。但对于教学方式的探讨中,肯定有适合快速转型的数学教学方法。例如,在小学数学课堂,老师可以将单纯的数字具体化,如一加一的问题可以表述成一片草地和一个花园的模型,然后在在“草地”和“花园”中加深内容,把学生带到这个情景中,不断地加深问题难度,把简单的运算转化成小学生能够接受的逻辑推导,这种方法是国外常用的思维开发模式,对于小学生在数学方面的逻辑构成很有帮助。
也有其他一些方法来帮助逻辑教学,例如在美国,想让孩子学乘法之前必须把学生带到学校的计算机房,老师会拿着计算机的插头,然后告诉这些小学生,这就是乘法。其实这不过是老师的“无理取闹”,这一切举动和要学习的数学根本无关,但学生会对此产生很大的好奇,会一再思考为什么计算机插座就是乘法。这让学生的逻辑性又是进一步提高。
所以,或许国外的逻辑教学不是十全十美,甚至有点夸大其词。但相比国内的“纯计算”教学,更能为学生以后思考的方式做出更大的帮助。
中国杰出的数学家陈景瑞先生说过:“我在国外作研究的那几年,学到了真正的数学。”对于小学数学,家长,老师一直以为先任的计算让孩子们被束缚了很多,这种模式的小学数学教学,带来的是初中对几何证明题的一窍不通,带来的是高中对解析几何问题的不求甚解,带来的是大学对高等数学的应试习惯。
经过这些分析和多年的教学实验,我们能够得到这样的结论:数学的教学要偏重逻辑,而且这种偏重,从小学数学就要开始。
最后,期望小学数学教育能够成功的迈出这一步,期望小学数学教育能为中国教育改变更多。 tag:小学数学论文
3.小学数学小论文
以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。
然而,有一件事却改变了我的看法。 那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。
我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。
这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”
爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个'数学博士'也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。
此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。
也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。”
”耶!”听了爷爷的话,我高兴地举起双手。从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。
4.数学小论文5篇
我只能帮你一篇
数学论文“神奇的莫比乌斯圈”
莫比乌斯圈是一种只有一个面,一条线的曲面。
数学历史上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?许多人绞尽脑汁也没有想出来,他们觉得:如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不过这样就不符合涂抹的要求了。
对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。 一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耷拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。
数学中的知识,很多都来自生活
5.数学小论文
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47*5=244,把首项加末项的和乘项数除以2,(9+244)*48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)*48÷2*2+(2+49)*48÷2*2+(3+50)*48÷2*2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)*5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)*5+4*48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
6.小学数学精美教学论文范文 如何避免和纠正小学生计算方面的错误
内容摘要:计算教学,是小学数学中的重要组成部分,在小学数学教学中占据着十分重要的地位。培养学生正确、迅速的计算能力是小学数学教学的基本任务,但学生在计算练习过程中出现错误是常有的现象,这严重干扰着小学生学习数学的积极性。曾有人把这些错误归咎为学生的“粗心、马虎”。其实不然,学生在计算中出现错误的原因是多方面的,我们必须找出错误的原因,有针对性的采取积极的预防措施,有助于提高学生的计算能力.
关键词:避免 纠正 计算 错误
计算教学,是小学数学中的重要组成部分,是培养学生养成良好的学习习惯,形成健康的心理品质的重要手段。《数学课程标准》中也指出“数学是人们生活、劳动和学习必不可少的工具”。小学数学教学的一项重要任务是培养学生正确、迅速的计算能力,这对进一步学习和今后参加生活劳动有着十分重要的作用。但学生在实际学习中,计算差错多,准确率低,经常出现这样、那样的错误,严重干扰着小学生对数学学习的兴趣以及教师的正常教学,大部分人都会把这种错误归咎于学生“粗心”、“马虎”等,其实不然,学生在计算中出现的错误的原因是多方面的,因此,对于小学生计算错误进行分类,分析其错误的原因,以及提出纠正的方法,对于小学生避免或减少计算错误是非常必要的,对于我们的教学也是有益的。
仔细分析起来,导致学生计算出错的原因是很多的。
7.紧急,求小学数学论文
毕业论文
小学数学中的许多知识和能力在现实生活中都能找到原型。
比如可以把课堂搬到教室外面去,因为数学知识源于生活,但并不是生活本身的摹本,它具有高度的抽象性,这对于以具体形象为主、生活经验匮乏的我们来说,难以得到透彻的理解。在学习米、千克时,老师先让我们利用手中的米尺,量一量跳绳、旗杆、课桌椅等,称一称自己带来的轻便的物品,如盐、味精、苹果等,然后总结。老师讲得唇焦舌燥,我们忙得不亦乐乎。可是在练习的时候,还有很多同学无法下手。
由此,我想到了,在教室里能让我们动手去做的事实在是太少了,很多生活中的物品无法在课堂上让我们亲自去感受。对于米、千克的认识,我们得到的感性认识实在是太少了。老师就让我们用自己的小皮尺去量学校里的任何东西,大家都兴致勃勃地忙开了,有的去量讲台、课桌、黑板的长和宽,有的走出教室去量花坛,还有的同学去量篮球场。下课回到家后,有的人还在家里继续量。
我们回校后汇报了自己的经历,并说出了由于单个东西的大小不同,所以一千克物品的个数也不相同的体验。如:一千克鸡蛋大约有10只,而一只鸭却有二千克等。再做练习时,所有的问题都能迎刃而解了,因为“1米”、“1千克”的概念在我们自己头脑中已经形成,并且相当坚固了。
在生活体验中,培养观察能力。引导我们有目的、有意识地观察生活中的数学问题,既有利于大家收集信息,又有利于自己的观察能力的培养和发展。
如学习圆柱时,老师让大家来个收集图形的大行动,找出生活是圆柱形的物体,再比较各种物体的相同点。这样学习的好处是,迫使我们用书上所学的关于圆柱的知识。
在生活体验中,培养表达能力。生活中有许多关于数学的知识,让自己将生活中捕捉到的信息说出来,不仅能培养我们的口头表达能力,还能帮助大家更好地了解生活。
如学“元、角、分”时,我让学生在课前去收集关于人民币的知识。在课堂上,大家讨论、交流、汇报了收集的信息了解了人民币的种类繁多:有纸币,有硬币,有1分、2分、5分、1角、2角、5角、1元、2元、5元、10元、50元、100元等不同面值,以及人民币的广泛用途。在学怎样读数时,老师给我们布置了一个任务——收集生活中有万以内数的信息。同学们都积极地投入到准备中。课堂汇报时,同学们纷纷说出了所收集到的信息,如学校操场一圈的长度是200米,电冰箱的价格是2500元,珠穆朗玛峰的高度是8848米等等,信息包括了生活中各个方面,大家也很好地了解了数在生活中的体现,真正做到了学以致用。
总之,数学学习与熟悉的生活素材是密切相关的,能不断地沟通数学于生活的联系,使数学与生活紧紧相连。
8.要一篇关于《百分数的应用》的数学小论文
为迎接2008年的奥运会,少先队组织了“奥运 英语大家说”的竞赛活动。
在总结会上,辅导员 公布了各班取得满分的人数:五(1)班34人,五 (2)班21人……课下聊天时,五(1)班的小鹏 对五(2)班的小亮骄傲的说:“我们班得满分的 人多。”小亮不服气地说:“我们班有30人,你 们班有50人!”两人谁也说服不了谁,都说自己 班成绩好。
这学期升六年级了,学习了百分数的 应用,又想起这件事,于是一起计算每班得分的 百分率,五(1)班有50人,34人满分,34÷ 50=0.68=68%;五(2)班有30人,21人满分,21 ÷30=0.7=70%。别看五(1)班的满分的多,可百 分率却是五(2)的多。
9.三年级数学论文
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.当然,看http:// 。
10.数学小论文:小明买水果
这天,小明的妈妈让小明干一件特殊的事,卖桃子。
小明妈妈说:“儿子,记住,大桃子一元两个,小桃子一元三个。”说罢,匆匆忙忙上班去了。
小明一数桃子,呀,大小桃子各三百个。于是,小明在一个路口大喊:“卖桃子,两元钱五个桃子。”
……傍晚,小明卖完桃子,披着夕阳回到了家。他一数钱,吓了一跳,原来,卖桃子本应得300÷2+300÷3=150+100=250(元),可他手里只有240元钱,少了10元。
他再一数,还是少了10元钱,这时,妈妈回来了,小明把事情告诉了妈妈,妈妈笑着说:“傻孩子,以2元钱5个卖,大桃子亏了,大桃该应该卖300÷2=150(元),但是你卖了300÷5*2=120(元)亏了30元,小桃应卖300÷3=100(元),而你也卖了120元,多卖了20元,这样算下来,总数就亏了10元钱。小明若有所悟:“妈妈,如果小桃子的数目是大桃的1. 5倍,我就不会亏了,是不是?”妈妈说:“是啊!”。
转载请注明出处众文网 » 小学数学毕业论文范文7000字(小学数学论文)