1.求助:论文《微分方程在力学中的应用》相关资料及建议
微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。
微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。
常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。
最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。
偏微分方程是分析波动、二维受力分析等常见的方程了。
如果你要写论文,可以考虑以下两方面的应用:
1 牛顿定律分析
2 波动分析
2.微分方程在经济学中的常作用应用1500字论文
1500字太夸张了,给你一下提示吧!
1、运用微分方程或微分方程组,可以描述经济系统的动态运行规律。
2、运用微分方程,可以分析经济系统的均衡与稳定性。
3、在微分方程中加入控制变量,将经济学问题转化为最优控制问题,可以分析经济系统的最优控制策略。
目前比较常用的微分方程在经济学中的应用有:(1)最早的哈罗德-多马经济增长模型、索罗模型等均属于微分方程(或转化为差分方程)模型。(2)后来的经济增长的世代交替模型等也是运用的微分方程。(3)技术扩散的巴斯模型,以及分析竞争洛克塔-瓦塔利亚模型也是微分方程模型。(4)亚瑟的路径依赖与锁定模型是随机微分方程。(5)布莱克-斯科尔斯期权定价模型,源于随机微分方程和变分法。(6)各种进化博弈模型中的复制动态方程是微分方程。
3.微分方程在经济学中的常作用应用1500字论文
1500字太夸张了,给你一下提示吧!1、运用微分方程或微分方程组,可以描述经济系统的动态运行规律。
2、运用微分方程,可以分析经济系统的均衡与稳定性。3、在微分方程中加入控制变量,将经济学问题转化为最优控制问题,可以分析经济系统的最优控制策略。
目前比较常用的微分方程在经济学中的应用有:(1)最早的哈罗德-多马经济增长模型、索罗模型等均属于微分方程(或转化为差分方程)模型。(2)后来的经济增长的世代交替模型等也是运用的微分方程。
(3)技术扩散的巴斯模型,以及分析竞争洛克塔-瓦塔利亚模型也是微分方程模型。(4)亚瑟的路径依赖与锁定模型是随机微分方程。
(5)布莱克-斯科尔斯期权定价模型,源于随机微分方程和变分法。(6)各种进化博弈模型中的复制动态方程是微分方程。
4.求一篇关于微积分应用的小论文(两千字就行)
高数论文 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。
圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。
到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。
这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。
因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。
(l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。
这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。
牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。
莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。
莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。
牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。
牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
5.微分方程中的参数估计及其应用的论文该怎么写
本文对于一阶非线性偏微分方程模型,研究了方程中系数,边界条件和初始条件中参数的估计方法,使用最小二乘法准则,藉助变分学推导出一些必要条件.
【作者单位】:
【关键词】: 偏微分方程—参数估计
【正文快照】:
引古口
现代科学和技术的发展,已经有可能为所研究客观系统建立变量间的数学模型。现代测量技术也有可能测量出世界上许多物理或化学量.基于这些可用信息,怎样从一般模型中找出适合于特定要求的一个,这就是要推测模型方程的未知部分,例如方程中的参数,边界条件或初始条件
6.应用数学专业毕业论文
先修课程:数学与应用数学专业主要课程、教育类课程等
适用专业:数学与应用数学(本科、师范)
一、目的
培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。
二、论文选题
论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:
1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;
2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;
3.结合自己所学的专业知识,联系实际解决一些应用问题;
4.对中学有关数学课程的教材、教学方法进行专题研究;
5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;
6.对新课程改革的理论与实践进行探讨。
论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。
三、对毕业论文的基本要求
1.立论、观点要符合马克思主义基本原理;
2.对学术的探讨要符合科学性和逻辑性;
3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;
4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;
5.文字通顺,表达确切,书写规范,独立完成;
6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;
7.论文应包括英文名、英文摘要和英文关键词;
8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。
四、毕业论文成绩评定
1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。
毕业生毕业论文统一格式要求
一、论文用纸:B5纸打印。
二、论文标题:
1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文:
1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。
7.谁知道有关常微分方程的论文 十万火急
二 测定考古发掘物的年龄
利用放射现象我们还可以测定考古发掘物的年龄。这个方法的依据很简单,地于周围的大气层不断的受到宇宙射线的轰击。这些宇宙射线使地球中的大气产生中子,这些中子同氮发生作用产生 。因为 会发生放射性衰变,所以通常称这种碳为放射性碳。这种放射性碳又结合到二氧化碳中在大气中漂动而被植物吸收。动物通过吃植物又把放射性碳带入它们的组织中,在活的组织中, 的摄取率正好与 的衰变率相平衡。但是,当组织死亡以后,它就停止摄取 ,因此 的浓度因 的衰变而减少。地球的大气被宇宙射线轰击的速度始终不变,这是一个基本的物理假设。这就意味着,在挖掘中有木炭这样的物质时, 原来的蜕变速度同现在测量出来的蜕变速度是一样的。这样我们就可以测定木炭样品的年龄。设 表示在时刻 样品中存在的 的数量,单们时间衰变的原子数 与 成比例。即:
表示在时刻 时样品中的数量状况,即样品形成时的数量。若 是 的衰变常数( 的半衰期是5568年),则 , 。
所以 则有
由此我们测出木炭中 目前的蜕变速度 , 而来的蜕变速度是 ,因此: ,从而 。
所以如果我们测出木炭中 目前的蜕变速度 ,并且注意到 必须等于相当数量的活的树木中 的蜕变速度,那么我们就能算出木炭的年龄,从而知道发掘物的年龄。
三 在军事上的应用
利用常微分方程可了解深水炸弹在水下的运动。一质量为 的深水炸弹,从高为 处自由下落到水中。如果不考虑人水炸弹在水平方向的运动,而仅考虑它在竖直方向的运动。由经典力学知:物体从高为 米处自由下落至海平面时,其竖直方向的速度 为: ( 为重力加速度)。深水炸弹自高度为 米处自由下落至海平面的瞬时时间为 ,于是深水炸弹的初始状态为: