1.分块矩阵的应用论文
[1]毛纲源. 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J]. 应用数学,1995,(3).
[2]游兆永,姜宗乾,. 分块矩阵的对角占优性[J]. 西安交通大学学报,1984,(3).
[3]曹重光. 体上分块矩阵群逆的某些结果[J]. 黑龙江大学自然科学学报,2001,(3).
[4]庄瓦金. 非交换主理想整环上分块矩阵的秩[J]. 数学研究与评论,1994,(2).
[5]曹礼廉,李芳芸,柴跃廷. 一种用于MRP的分块矩阵方法[J]. 高技术通讯,1997,(7).
[6]逄明贤. 分块矩阵的Cassini型谱包含域[J]. 数学学报,2000,(3).
[7]杨月婷. 一类分块矩阵的谱包含域[J]. 数学研究,1998,(4).
[8]何承源. R-循环分块矩阵求逆的快速傅里叶算法[J]. 数值计算与计算机应用,2000,(1).
[9]马元婧,曹重光. 分块矩阵的群逆[J]. 哈尔滨师范大学自然科学学报,2005,(4).
[10]游兆永,黄廷祝. 两类分块矩阵的性质与矩阵正稳定和亚正定判定[J]. 工程数学学报,1995,(2).
2.求一篇线性代数的论文
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。
线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易.
一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m*n矩阵,B是n*s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有
r(B)≤n-r(A)即r(A)+r(B)≤n
进而可求矩阵A或B中的一些参数
上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。
三、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
3.数学毕业论文,矩阵方面的什么方向题目比较好写点
什么是几何? 数学是研究数量关系和空间形式的一门科学.几何则是侧重研究空间形式. 相传古埃及的尼罗河每年都洪水泛滥,把两岸的土地淹没,人们无法辨认自己的田地,久而久之,人们利用测量与画图来测出土地的周界并计算面积,因而积累了大量的图形知识.后来希腊商人到埃及学会了测量与绘图知识,到公元前338年,希腊人欧几里得对这些知识作了系统的总结和整理,写出了一部关于几何的经典著作——《几何原本》,这就形成了一本完整的几何学.1607年,我国数学家徐光启和意大利传教士利玛窦一起翻译了《几何原本》,同学们学的几何课本就源于这部书. 十八世纪德国著名数学家高斯在19岁时就用圆规和直尺作出了正十七边形.1500年前,我国数学家祖冲之,计算出圆周率在3.1415926与3.1415927之间,他们为几何学的发展作出了杰出的贡献,同学们现在学习的是平面几何,高中要学习立体几何、平面解析几何,大学还要学习微分几何,空间解析几何,黎曼几何等. 二 如何学好几何? 学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”.其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的. 第一 要学好概念.首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映.注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质…… 第二 要学好几何语言.几何语言又分为文字语言和符号语言,几何语言总是和图形相联系.如文字语言:∠1和∠2互为补角,图形见下图,符号语言:∠1+∠2=180°,或∠1=180°-∠2,或∠2=180°-∠1. 第三 要进行直观思维.即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力. 第四 要富于想像.有的问题既要凭借图形,又要进行抽象思维.比如,几何中的“点”没有大小,只有位置.现实生活中的点和实际画出来的点就有大小.所以说,几何中的“点”只存在于大脑思维中.“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中. 第五 要边学习、边总结、边提高.几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结.比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线. 同学们只要认真学习,注意听讲,勤于思考,独立完成作业,是一定能学好几何的.天下无难事,只要肯登攀,胜利将属于你们。
4.求高等代数的课程论文题目
课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。
思想3.《高等代数》中的。
方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法。
5.应用数学毕业论文
随机环境中经济增长模型研究
广义生产函数假设下的经济增长模型分析
考虑市场预期的供求关系模型
基于Matlab的离散事件模拟
用风险预算进行资产配置
有向图上的PAR贯序模拟系统
单圈图的一般Randic指标的极值问题
模糊数学在公平评奖问题中的应用
模糊矩阵在环境评估中的初步应用
模糊评判在电脑中的初步应用
数学家的数学思想
Riemann积分定义的网收敛表述
微积分思想在不等式证明中的应用
用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义
微积分思想在几何问题中的应用
齐次平衡法求KdV-Burgers方程的Backlund变换
Painleve分析法判定MKdV-Burgers方程的可积性
直接法求KdV-Burgers方程的对称及精确解
行波求解KdV-Burgers方程
因子有向图的矩阵刻划
简单图上的lit-only sigma-game
半正则图及其线图的特征多项式与谱
分数有向图的代数表示
WWW网络的拓扑分析
作者合作网络等的拓扑分析
古诺模型
价格歧视
用数学软件做计算微分方程的计算器
用数学软件做矩阵计算的计算器
弹簧-质点系统的反问题
用线性代数理论做隐含语义搜索
对矩阵若当标准型理论中变换阵求法的探讨
对矩阵分解理论的探讨
对矩阵不等式理论的探讨(1)
对矩阵不等式理论的探讨(2)
函数连续性概念及其在现代数学理论中的延伸
从有限维空间到无限维空间
Banach空间中脉冲泛函微分方程解的存在性
高阶脉冲微分方程的振动性
具有积分边界条件的分数阶微分方程解的存在唯一性
分数阶微分方程的正则摄动
一个形态形成模型的摄动解
一个免疫系统常微分方程模型的渐近解
前列腺肿瘤连续性激素抑制治疗的数学模型
前列腺肿瘤间歇性激素抑制治疗的数学模型
病毒动力学数学模型
肿瘤浸润数学模型
耗散热方程初边值问题解的正则性
耗散波方程初边值问题解的正则性
耗散Schrodinger方程初边值问题解的正则性
非线性发展方程解得稳定性
消费需求的鲁棒调节
生产函数的计量分析
企业的成本形态分析的研究
分数阶Logistic方程的数值计算
分数阶捕食与被捕食模型的数值计算
AIDS传播模型的全局性分析
HIV感染模型的全局性分析
风险度量方法的比较及其应用
具有区间值损益的未定权益定价分析
模糊规划及其在金融分析中的应用
长依赖型金融市场
股票价格与长相依性
分数布朗运动下的外汇期权定价
不确定性与资产定价
加油站点的分布与出租车行业的关系
6.什么是矩阵,研究它有什么意义,它在生活用有什么应用
什么叫作矩阵 矩阵乘法是线性代数中最常见的运算之一,它在数值计算中有广泛的应用。
若A和B是2个nn的矩阵,则它们的乘积C=AB同样是一个nn的矩阵。A和B的乘积矩阵C中的元素C[i,j]定义为: 若依此定义来计算A和B的乘积矩阵C,则每计算C的一个元素C[i,j],需要做n个乘法和n-1次加法。
因此,求出矩阵C的n2个元素所需的计算时间为0(n3)。 60年代末,Strassen采用了类似于在大整数乘法中用过的分治技术,将计算2个n阶矩阵乘积所需的计算时间改进到O(nlog7)=O(n2.18)。
首先,我们还是需要假设n是2的幂。将矩阵A,B和C中每一矩阵都分块成为4个大小相等的子矩阵,每个子矩阵都是n/2n/2的方阵。
由此可将方程C=AB重写为: (1) 由此可得: C11=A11B11 A12B21(2) C12=A11B12 A12B22(3) C21=A21B11 A22B21(4) C22=A21B12 A22B22(5) 如果n=2,则2个2阶方阵的乘积可以直接用(2)-(3)式计算出来,共需8次乘法和4次加法。当子矩阵的阶大于2时,为求2个子矩阵的积,可以继续将子矩阵分块,直到子矩阵的阶降为2。
这样,就产生了一个分治降阶的递归算法。依此算法,计算2个n阶方阵的乘积转化为计算8个n/2阶方阵的乘积和4个n/2阶方阵的加法。
2个n/2n/2矩阵的加法显然可以在c*n2/4时间内完成,这里c是一个常数。因此,上述分治法的计算时间耗费T(n)应该满足: 这个递归方程的解仍然是T(n)=O(n3)。
因此,该方法并不比用原始定义直接计算更有效。究其原因,乃是由于式(2)-(5)并没有减少矩阵的乘法次数。
而矩阵乘法耗费的时间要比矩阵加减法耗费的时间多得多。要想改进矩阵乘法的计算时间复杂性,必须减少子矩阵乘法运算的次数。
按照上述分治法的思想可以看出,要想减少乘法运算次数,关键在于计算2个2阶方阵的乘积时,能否用少于8次的乘法运算。Strassen提出了一种新的算法来计算2个2阶方阵的乘积。
他的算法只用了7次乘法运算,但增加了加、减法的运算次数。这7次乘法是: M1=A11(B12-B22) M2=(A11 A12)B22 M3=(A21 A22)B11 M4=A22(B21-B11) M5=(A11 A22)(B11 B22) M6=(A12-A22)(B21 B22) M7=(A11-A21)(B11 B12) 做了这7次乘法后,再做若干次加、减法就可以得到: C11=M5 M4-M2 M6 C12=M1 M2 C21=M3 M4 C22=M5 M1-M3-M7 以上计算的正确性很容易验证。
例如: C22=M5 M1-M3-M7 =(A11 A22)(B11 B22) A11(B12-B22)-(A21 A22)B11-(A11-A21)(B11 B12) =A11B11 A11B22 A22B11 A22B22 A11B12 -A11B22-A21B11-A22B11-A11B11-A11B12 A21B11 A21B12 =A21B12 A22B22 由(2)式便知其正确性。 至此,我们可以得到完整的Strassen算法如下: procedureSTRASSEN(n,A,B,C);beginifn=2thenMATRIX-MULTIPLY(A,B,C)elsebegin将矩阵A和B依(1)式分块;STRASSEN(n/2,A11,B12-B22,M1);STRASSEN(n/2,A11 A12,B22,M2);STRASSEN(n/2,A21 A22,B11,M3);STRASSEN(n/2,A22,B21-B11,M4);STRASSEN(n/2,A11 A22,B11 B22,M5);STRASSEN(n/2,A12-A22,B21 B22,M6);STRASSEN(n/2,A11-A21,B11 B12,M7); ; end; end; 其中MATRIX-MULTIPLY(A,B,C)是按通常的矩阵乘法计算C=AB的子算法。
Strassen矩阵乘积分治算法中,用了7次对于n/2阶矩阵乘积的递归调用和18次n/2阶矩阵的加减运算。由此可知,该算法的所需的计算时间T(n)满足如下的递归方程: 按照解递归方程的套用公式法,其解为T(n)=O(nlog7)≈O(n2.81)。
由此可见,Strassen矩阵乘法的计算时间复杂性比普通矩阵乘法有阶的改进。 有人曾列举了计算2个2阶矩阵乘法的36种不同方法。
但所有的方法都要做7次乘法。除非能找到一种计算2阶方阵乘积的算法,使乘法的计算次数少于7次,按上述思路才有可能进一步改进矩阵乘积的计算时间的上界。
但是Hopcroft和Kerr(197l)已经证明,计算2个22矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再寄希望于计算22矩阵的乘法次数的减少。
或许应当研究33或55矩阵的更好算法。在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。
目前最好的计算时间上界是O(n2.367)。而目前所知道的矩阵乘法的最好下界仍是它的平凡下界Ω(n2)。
因此到目前为止还无法确切知道矩阵乘法的时间复杂性。关于这一研究课题还有许多工作可做。
关于应用 简单一点的 表格,像考试分数求和 复杂一点的 魔方的解决方法,用矩阵代换方法。
7.本科毕业论文全是在百度百科中拼凑的,查重率会不会很高
会的。
以中国传媒大学为例,有下列情况之一时为不及格:毕业论文(设计、创作)中有原则性重大错误或没有完成课题;弄虚作假,有抄袭行为;答辩时概念不清,对主要问题回答不出来;工作量严重不足;论文查重超过30%(法学专业超过35%)。
学生完成毕业论文(设计、创作)后,须通过“审阅”、“评阅”、“答辩”等三个评定环节。每个环节均要评价其完成工作情况,写出评语,最后由答辩委员会(或答辩小组)以五级分制评定学生的毕业论文(设计、创作)成绩。
扩展资料:
本科生毕业论文的相关要求规定:
1、毕业论文的选题,应符合专业培养目标,保证达到该专业毕业论文的基本要求。
2、毕业论文的选题须先提供充分的资料、文献、数据和规范等依据,不允许先立题目后找依据,适当训练学生使用外文资料。
3、毕业论文的选题范围和深度应符合学生在校所学理论知识和实践技能的实际情况,难易适当、工作量要合理、过程要完整,使学生经过努力能够在规定时间内完成。
参考资料来源:中国传媒大学-中国传媒大学本科生毕业论文(设计、创作)管理办法(暂行)
转载请注明出处众文网 » 分块矩阵本科毕业论文(分块矩阵的应用论文)