关于解析几何的毕业论文(数学毕业论文,矩阵方面的什么方向题目比较好写点)

1.数学毕业论文,矩阵方面的什么方向题目比较好写点

什么是几何? 数学是研究数量关系和空间形式的一门科学.几何则是侧重研究空间形式. 相传古埃及的尼罗河每年都洪水泛滥,把两岸的土地淹没,人们无法辨认自己的田地,久而久之,人们利用测量与画图来测出土地的周界并计算面积,因而积累了大量的图形知识.后来希腊商人到埃及学会了测量与绘图知识,到公元前338年,希腊人欧几里得对这些知识作了系统的总结和整理,写出了一部关于几何的经典著作——《几何原本》,这就形成了一本完整的几何学.1607年,我国数学家徐光启和意大利传教士利玛窦一起翻译了《几何原本》,同学们学的几何课本就源于这部书. 十八世纪德国著名数学家高斯在19岁时就用圆规和直尺作出了正十七边形.1500年前,我国数学家祖冲之,计算出圆周率在3.1415926与3.1415927之间,他们为几何学的发展作出了杰出的贡献,同学们现在学习的是平面几何,高中要学习立体几何、平面解析几何,大学还要学习微分几何,空间解析几何,黎曼几何等. 二 如何学好几何? 学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”.其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的. 第一 要学好概念.首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映.注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质…… 第二 要学好几何语言.几何语言又分为文字语言和符号语言,几何语言总是和图形相联系.如文字语言:∠1和∠2互为补角,图形见下图,符号语言:∠1+∠2=180°,或∠1=180°-∠2,或∠2=180°-∠1. 第三 要进行直观思维.即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力. 第四 要富于想像.有的问题既要凭借图形,又要进行抽象思维.比如,几何中的“点”没有大小,只有位置.现实生活中的点和实际画出来的点就有大小.所以说,几何中的“点”只存在于大脑思维中.“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中. 第五 要边学习、边总结、边提高.几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结.比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线. 同学们只要认真学习,注意听讲,勤于思考,独立完成作业,是一定能学好几何的.天下无难事,只要肯登攀,胜利将属于你们。

2.数学论文

一,关于开设《大学数学》课程的思考 数学教研室 卢介景 [摘要] 二十世纪八十年代初期,我国卫生部开始把高等数学列为医学类各专业的必修课程。

几乎同时,世界开始进入“数学技术”的新时代。去年国家教育部高教司组织了一次重要会议,研讨“数学教育在大学教育中的作用”,建议开设“大学数学”课程。

医学院校面对新的挑战、新的要求,当有新的认识、新的行动。本文综合简介有关“数学技术”和“大学数学”的重要资料,结合我校实际提出一些教改建议。

此文也献给即将到来的“国际数学”年——2000年。 [关键词] 数学技术 大学数学 教学改革 一.“数学技术”的新挑战 1984年1月25日,在美国数学会(AMS)和美国数学协议(MAA)联合年会上,美国总统尼克松的科学顾问David说:“……,对数学研究的低水平的资助,只能出自对数学带来的好处的完全不适当的估价。

显然,很少的人认识到如今被如此称颂的‘高技术’本质上是数学技术。”此后,“‘高技术’本质上是数学技术”的说法在学术界,特别是在数学界广为流传。

例如,在欧洲工业数学联合会的宗旨中,就引述了David的这句话。 1989年8月18日,在中国数学会召开的数学教育与科研座谈会上,钱学森教授指出:“……,这是数学技术,即怎样给出一个方法,能使科学的理论通过电子计算机解答具体的科学技术问题。

”“……,数学的发展关系到整个科学技术的发展,而科学技术是第一生产力;所以数学的发展是一件国家大事。” 五十年前,数学虽然也直接为工程技术提供一些工具,但基本方式是间接的:先促进其他科学的发展,再由这些科学提供工程原理和设计的基础。

“高技术”的出现,把我们的社会推进到了数学工程技术的时代。 数学与工程技术之间,在更广阔的范围内和更深刻的程度上,以新的方式直接地相互作用着,极大地推动了数学和工程科学的发展。

数学从后台走向前台。 数学技术的例子是很多的。

例如,代数与密码技术;Radon与CT(计算机层析)技术;大规模线性规划求解技术在经济、管理中的应用;与保险有关的精算学软件;期货、期权交易中的期权定价软件;信息提取与处理软件;小波技术在信息科学中的应用;穿甲弹的计算仿真技术;并行计算技术在气象和工程中的应用;等等。 创建于1964年的美国工程院,过去是不选数学家为院士的。

但是,在1997年选出的85位院士中,有3位数学家;在1998年选出的84位院士中,又有3位数学家。这从一个方面说明了时代对“数学技术”的认可。

鉴于数学科学在21世纪所具有的关键的重要性,即将到来的公元2000年,被联合国定为“国际数学年”。 在今后两千年内,在人类思想领域里,具有压倒性的新情况,将是数学地理解问题占统治地位。

“数学技术”对我国大学数学教育提出了新的挑战。 二.“大学数学”的新要求 1998年10月,教育部高教司在北京组织了一个重要会议,研讨“数学教育在大学教育中的作用”。

在一些重要问题上,教育部领导、专家与第一线数学教师取得了广泛的共识。 在面临21世纪数学思想和方法对世界经济和技术发展起着越来越重要作用的形势下,必须明确:数学是培养和造就各类高层次专门人才的共同基础。

对非数学类专业的学生,大学数学基础课的作用至少有以下三个方面。 首先,它是学生掌握数学工具的主要课程。

目前的主要问题是,对“工具性”的理解过窄,甚至把数学基础课看成只是为专业课程服务的工具。历史的经验告诫我们,这将导致学生基础薄弱、视野狭窄、后劲不足、创新乏力,十分不利于面向21世纪人才的培养。

其次,它是学生培养理性思维的重要载体。 从本质上讲,数学研究的是各种抽象的“数”和“形”的模式结构,运用的主要是逻辑、思辩和推理等理性思维方法。

这种理性思维的训练,是其他学科难以替代的。这对大学生全面素质的提高、分析能力的加强、创新意识的启迪都是至关重要的。

再次,它是学生接受美感熏陶的一种途径。 数学是美学四大中心建构(史诗、音乐、造形和数学)之一。

数学为之努力的目标:将杂乱整理为有序,使经验升华为规律,寻求各种运动的简洁统一的数学表达等,都是数学美的表现,也是人类对美感的追求。 对大学数学教育改革,要转变教育观念,用正确的教育思想指导改革的实践。

要以数学统一性的观点,从全面素质教育的高度,来设计数学基础课程的体系。把微积分、代数、几何以及随机数学作为大学非数学专业的四门必修基础课程,并把这一序列课程统称为《大学数学》。

根据数学教学自身的特点以及长期实践的经验,对大学数学的课堂教学学时,应保障其基本稳定。 对一般理工和财经管理类专业,学时不应少于300,其中少数对数学要求较低的学校和专业,也不应少于240;对农林类各专业,不应少于200;医科类力争不低于140;文科类争取达到140。

数学教学的安排不能过于集中,最好不少于两个学期。 要充分认识数学教改的艰巨性。

大力加强教学方法改革的研究和实验。努力加强数学教学中的实践环节。

指导思想应求基本一致,具体做法则要因校制宜、百花齐放、突出特色。要办出特色,必须。

3.如何写数学与应用数学专业的论文我是一位大一的学生,导员老师为了

虽然我没写过论文,但还是想提点建议,楼主不妨考虑一下。

作为大一学生,限于学识和能力,要写作的所谓“专业论文”,不会要求达到毕业论文那样高的水平,只要对所学过某一方面的知识和方法作一个较为系统的整理就可以了。鉴于此,下面就楼主所提到的四门课程各拟一题,仅供参考: 1.数学分析:极限的求法; 2.高等代数:行列式的计算方法; 3.空间解析几何:仿射变换及其应用; 4.高等几何:高等几何在平面几何证题中的应用。

个人建议:前两个题目比较容易下手,而且收集资料比较方便,可以优先考虑。当然,楼主也可以通过google,搜索“数学系毕业论文题目”,去寻找您觉得更合适的课题。

4.立体几何与解析几何··

归纳几点: 1。

恶补基础知识; 2。做大量练习; 3。

不断地问你周围的高手,学习他们的思考方式,学习方法和学习习惯; 4。永远不要觉得140分很遥远,要坚韧,有毅力,相信自己能补上去; 5。

提过一次,然后坚持认真做就行,不要第二次问如何学好**,还有第四条很重要。 网友介绍的详细方法,希望对你有用。

要学好高中数学的解析几何,就要会用好的学习方法。

如何学好立体几何 第一要建立空间观念,提高空间想象力。 从认识平面图形到认识立体图形是一次飞跃,要有一个过程。

有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。 有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。

此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。 第二要掌握基础知识和基本技能。

要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。

在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。 要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法——分析法、综合法、反证法。

第三要不断提高各方面能力。 通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,最好做到否定举出反面例子,肯定给出证明。

欧拉公式的内容是以研究性课题的形式给出的,要从中体验创造数学知识。要不断地将所学的内容结构化、系统化。

所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。

牢固地把握一些能统摄全局、组织整体的概念,用这些概念统摄早先偶尔接触过的或是未察觉出明显关系的已知知识间的联系,提高整体观念。 要注意积累解决问题的策略。

如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。 要不断提高分析问题、解决问题的水平:一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。

要不断提高反省认知水平,积极反思自己的学习活动,从经验上升到自动化,从感性上升到理性,加深对理论的认识水平,提高解决问题的能力和创造性。 如何学好解析几何 数学是必考科目之一,故从初一开始就要认真地学习数学。

那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。 认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。

让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝。

5.《如何学好小学数学几何》 论文

何谓“几何”?弗赖登塔尔认为,所谓几何就是把握空间,而这个空间对儿童来说,就是他们生活和运动的空间。

因此,“几何”又称为“空间几何”,从严格意义上讲,空间几何主要就是研究事物的空间形式或关系的一门学科。我们首先要弄清楚,作为小学数学课程的空间几何,与作为数学科学的空间几何是有区别的:1、作为数学科学的空间几何(1)是一个完整的知识体系(2)是一种论证几何,或称之为证明几何(3)是存在于严密的公理体系之中的2、作为小学数学课程的空间几何(1)是几何学中最基础的部分(2)是一种直观几何,或称之为经验几何、实验几何(3)是存在于不太严密的局部组织之中的明确了小学数学几何与数学课程几何的不同点之后,就要来研究究竟如何更加有效地进行小学数学的几何学习呢?下面分三个部分:一、小学几何学习的基本分析这部分内容又分三个知识点:(一)、小学数学几何学习的基本内容:也就是我们所说的“空间与图形”,具体内容有:简单几何形体的认识、变换(包括平移、旋转和对称等)、位置、图形测量、简单图形的周长、面积与体积的计算、方向的认识以及平面坐标的初步体验等。

(二)、小学数学几何学习的基本目标:(分两个方面表述)1、从活动的特征表述(1)能从实物的形状想像出几何图形,或由几何图形想像出实物的形状;(2)能从较复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系;(3)能描述出实物或图形的运动和变化;(4)能采用适当的方式描述物体间的位置关系,或能运用图形形象地描述问题,并利用直观来进行思考。2、从内容的特征表述(1)使学生获得有关线、角、简单平面图形和立体图形的知觉映象(空间表象)(2)使学生能建立有关长度、面积或体积等的基本概念(3)能够对不太远的物体间的方位、距离和大小有较正确的估计(4)能从较复杂的图形中辨别有各种特征的图形(三)、小学数学几何学习的基本特点:(两点)1、经验是儿童几何学习的起点儿童的几何学习与成人(或更高年级学生)不同,他们不是以几何的公理体系为起点的,而是以已有的经验为起点的。

儿童在玩各种积木或玩具的过程中,在选择和使用各种生活用具的过程中,在接触到的各种自然现象中,甚至于他们在玩类似“过家家”的游戏中,逐渐感觉到了各种用具在几何方面的特点。2、操作是儿童构建空间表象的主要形式儿童的几何不是论证几何,更多的是属于直观几何,而直观几何就是一种经验几何或实验几何,因此,儿童获得几何知识并形成空间观念,更多的是依靠他们的动手操作。

儿童在这个过程中,是通过不断地尝试搭建、选择分类、组合分解等活动来增加自己的体验,积累自己的经验,丰富自己的想像的。二、儿童形成空间观念的基本特征发展儿童的空间观念是小学数学几何学习的基本价值。

所谓空间观念,就是指物体的形状、大小、位置、距离、方向等形象在人头脑中的映象,是空间知觉经过加工后所形成的表象。下面就结合实例从“思维发展”和“空间观念形成”两大方面具体谈谈“空间观念”。

(一)儿童几何思维水平的发展:1、水平0阶段(前认知阶段) 1)直线和曲线(线能区分)(2)正方形和平行四边形(面不能区分)2、水平1阶段(直观化阶段)(1)四边形和三角形(能从边的数量上去区分)(2)正方形和菱形(不能从角的特征上去区分)(3)长方形和长方体(不能区分面和体)3、水平2阶段(描述/分析阶段)(1)长方形、四边形、三角形(不同分类方法代表不同水平)(2)长方形是特殊的平行四边形(对图形内在性质和特征不能区分)4、水平3阶段(抽象/关联阶段)(1)平行四边形剪拼成长方形(2)三角形拼成平行四边形(能通过动手操作将新知转化为旧知进行学习)(3)长方形与长方体(能区分面和体)(二)儿童空间观念形成与发展的基本特征(三点) 1、儿童空间想像力的发展所谓的空间想像能力,就是指对客观事物的空间形式进行观察、分析、归纳和抽象的能力。低年段儿童在学习空间图形时基本上是从认识“二维图形”开始的,但儿童积累的却是大量的“三维”的几何经验,他们在对“二维”图形的空间思考的过程中,往往就会依附相应的直观物体,比如让学生举例说说生活中有哪些物体的形状是长方形的?学生往往会举到诸如课桌之类的,很难抽象出桌面的形状才是长方形。

甚至到了较高年级学习“圆的认识”时,还会受到直观物体“球”的干扰。2、儿童形成空间观念的主要心理特点(1)对直观的依赖较大“闭合的区域”往往比“开放的区域”更为直观。

如对三角形的性质理解可能会比对角的性质认识更容易;对周长的理解可能会比面积更容易。正如我们听到许多教师上《面积与面积单位》时,总是让学生通过自己的手的触摸来体验“面”的大小,并与周长作出对比,逐步获得对“面积”的理解。

(2)用经验来思考和描述性质或概念无法运用精确语言来描述“圆”,对“圆上”、“圆内”或“圆外”等概念还只能建立在“圆圈上”、“圆的里面”和“圆的外面”等上面。(3)空间观念的形成依靠渐进的过程。

6.高分求一篇论文 2000字 题目为:初等几何与高等几何的对比研究 资料

高等几何是中学教师进修数学专业(本科)的必修课程。

在学员已经熟悉初等几何、解析几何及高等代数有关知识的基础上,以仿射几何作为欧氏几何到射影几何的桥梁,逐步系统地阐明了射影几何的基本知识,并以变换群的观念加以比较,阐明了它们之间的内在联系。 本课程包括仿射几何、射影几何的基本知识二部分内容,其中以射影几何为主要内容。

本课程兼用代数法与综合法,侧重代数法。 第一章 仿射坐标与仿射变换 一、要求 1.掌握透视仿射对应概念和性质,以及仿射坐标的定义和性质。

熟练掌握单比的定义和坐标表示。 2.掌握仿射变换的两种等价定义;熟练掌握仿射变换的代数表示,以及几种特殊的仿射变换的代数表示。

3.掌握图形的仿射性质和仿射不变量。 二、考试内容 1.单比的定义和求法。

2.仿射变换的代数表示式,以及图形的仿射性质和仿射不变量。 3.仿射变换的不变点和不变直线的求法。

4.几种特殊的仿射变换的代数表示。 第二章 射影平面 一、要求 1.掌握中心射影与无穷远元素的基本概念,理解无穷远元素的引入。

2.熟练掌握笛萨格(Desargues)定理及其逆定理的应用。 3.熟练掌握齐次点坐标的概念及其有关性质。

4.理解线坐标、点方程的概念和有关性质。 5.掌握对偶命题、对偶原则的理论。

6.掌握复元素的概念及性质。 二、考核内容 1.中心投影与无穷远元素 中心投影,无穷远元素,图形的射影性质。

2.笛萨格(Desargues)定理 应用笛萨格(Desargues)定理及其逆定理证明有关结论。 3.齐次点坐标 齐次点坐标的计算及其应用。

4.线坐标 线坐标的计算及其应用。 5.对偶原则 作对偶图形,写对偶命题,对偶原则和代数对偶的应用。

6.复元素 复元素、共轭复元素,过一复点的实直线和在一复直线上的实点。 第三章 射影变换与射影坐标 一、要求 1.熟练掌握共线四点与共点四线的交比与调和比的基本概念、性质和应用。

2.掌握完全四点形与完全四线形的调和性及其应用。 3.掌握一维射影变换的概念、性质,代数表示式和参数表示式。

4.掌握二维射影变换的概念、性质以及代数表示式。 5.理解一维、二维射影坐标的概念以及它们与仿射坐标、笛氏坐标的关系。

二、考试内容 1.交比与调和比 交比的定义、基本性质及其计算方法,调和比的概念及其性质。 2.完全四点形与完全四线形 完全四点形与完全四线形的概念及其调和性。

3.一维基本形的射影对应 一维射影对应的性质,与透视对应的关系,以及代数表示式。 4.一维射影变换 一维射影变换的代数表示式和参数表示式。

5.一维基本形的对合 对合的定义、性质、参数表示,对合的二重元素及其性质。 6.二维射影变换 7.二维射影对应(变换)与非奇线性对应的关系。

8.射影坐标 一维射影坐标、二维射影坐标。 9.一维、二维射影变换的不变元素 求一维射影变换的不变点,二维射影变换的不变点和不变直线。

第四章 变换群与几何学 一、要求 1.了解变换群的概念。 2.理解几何学的群论观点。

3.弄清欧氏几何、仿射几何、射影几何之间的关系及其各自的研究对象。 二、考试内容 1.变换群与几何学的关系。

2.欧氏几何、仿射几何、射影几何学相应的变换群、变换式、研究对象基本不变量和基本不变性。 第五章 二次曲线的射影理论 一、要求 1.掌握二队(级)曲线的射影定义、二阶曲线与直线的相关位置,二阶曲线的切线,二阶曲线与二级曲线的关系。

2.掌握巴斯加定理、布利安桑定理以及巴斯加定理特殊情形。 3.掌握极点,极线的概念和计算方法,熟练掌握配极原则。

4.了解二阶曲线的射影分类。 二、考试内容 1.二阶(级)曲线的概念,性质和互化,求二阶曲线的主程和切线方程。

2.应用巴劳动保护加定理和布利安桑定理及其特殊情形证明有关问题,解决相在的作图问题。 3.求极点坐标和极线方程,求作极点和极线(作图),应用配极原则证明有关问题。

4.二阶曲线的射影分类。 第六章 二次曲线的仿射性质和度量性质 一、要求 1.掌握二次曲线的中心、直径、共轭直径、渐近线等概念和性质。

2.了解二次曲线的仿射分类与射影分类的区别。 3.掌握圆环点、迷向直线概念,掌握拉盖尔定理。

4.掌握二次曲线的主轴、焦点、准线等概念。 二、考试内容 1.求二阶曲线的中心、直径、共轭直径和渐近线。

2.求主轴、焦点和准线。 参考资料:书上的内容。

7.求一篇大学数学史对数学分析课的影响的论文,要求字数3000左右,

摘要:本文通过对高中生的调查研究发现当前高中生的数学观存在不够全面、不够准确、不够科学的现象,为此提出了通过数学史来影响高中生数学观之假设.经过为期一年多的实验和探索,发现数学史对改变学生的数学观能产生积极的影响,对学生的学习兴趣和学习效果也有明显的作用.因此积极倡导应用数学史来为数学教学服务.关键词:数学观;数学史;对数;复数教学中,经常有学生提出这样的问题:“老师,我怎么对数学就是没兴趣?”“老师,学了这些概念、定理和公式到底将来有什么用?”更有甚者问到:“老师,你为什么要逼我学数学,我将来也不搞数学研究。”

……的确,当前不少学生因为想不通数学就认为数学是一门枯燥乏味、难以学习的学科;因为不理解数学就认为数学是一门概念和规则从天而降的游戏;因为没有体会到数学的价值就认为数学是没有实际意义的学科,学数学只是为了应付考试;因为没有领悟数学的思想和精神就认为“概念我会背,公式我会用,定理我会证,题目我会做”是学好数学的最高标准……这些现象表明,学生思想深处的问题已经不能等闲视之了,为此笔者开展了相关研究。一、对高中生数学观的现状分析高中生的数学观主要是指学生关于数学本身的信念,关于数学学习的信念和关于自身的信念。

[1]由于个体具有不同的知识背景,或接受了不同哲学观念,或受不同教师的影响,再加上自己的实践经验,因此在数学学习过程中便逐渐产生和形成各自不同的认识和体会。(1)对数学本身的信念学生在数学学习过程中,对数学本身的感受和认识不尽相同。

通过对614名高中生的调查发现,约52.5%的人“从未想过数学是什么”;24.9%的人“曾经想过数学是什么,但不清楚是什么”;7.8%的人“曾经听老师说过数学是什么”;14.8%的人“曾经想过数学是什么,所以知道是什么”。但在他们眼中,数学主要是与数字、图形有关的问题;是由概念、公式、定理、法则、符号组成的一门学科;是技巧性和方法性很强但又不易把握的一门学科;是关于计算、解题的一门学科;是讨论空间形式与其数量关系的学科……(2)对数学学习的信念Davis等人的调查(李士锜2001,217-222)表明:学生在学习过程中,对数学学习持有不同观点和看法。

笔者调查发现高中生的数学学习信念主要是:①学数学就是要会做题目;②学数学就是为了在考试中取得好成绩;③学数学主要靠记忆、模仿、套公式;④学数学就是要培养一个人的计算能力、思维能力;立体几何主要培养一个人的逻辑推理能力和空间想象能力;⑤学数学就是学会用所学的数学知识解决实际生活中的问题。(3)对自身学习数学的信念学生对自身学习数学的信念差异明显,在调查中发现:①信心十足──有人对数学充满浓厚的兴趣,认为自己在数学方面有一定的天赋和优势,有信心、有能力学好数学。

②信心平淡──有人对数学的兴趣一般,认为自己在数学方面没有多少天赋和优势,但是只要自己勤奋努力,刻苦钻研,还是能够达到基本要求的。③信心缺乏──有人对数学不感兴趣,认为自己根本没有学习数学的天赋,没有学好数学的能力。

他们经常说自己从小学到现在数学都一直很差,由此来表明自己是学不好数学的。(4)数学观的类型根据调查分析,高中生的数学观不妨可归纳为以下几种:①动态的数学观。

在学生眼中,数学是不断变化、发展过程中的知识,从而可能会出现不足和错误,只有通过不断地尝试、改正和改进才会逐渐完善。所以学习数学也是一个循序渐进,不断完善的过程。

对自己的困惑和错误能够宽容,同时也知道只有采取积极的态度才会学好数学。②静态绝对主义数学观。

他们把数学知识看成自古有之、千年不变的、不容置疑的真理的集合,是一个高度严密、极端抽象的知识体系。因此,他们多强调接受和记忆,模仿和训练,提倡熟能生巧;或认为自己的记忆能力不行,抽象能力又较差,所以数学学习必然困难等想法。

③工具主义的数学观。他们认为学数学就是学会处理和解决各类(数学)问题的方法和技巧。

所以他们比较重视做应用题,提倡将数学与生活紧密结合,也比较注意积累与数学有关的素材。④文化主义数学观。

他们认为数学是与社会性质、阶级意识、民族精神等有一定关系的人类文化,是一种反应人们思维方法、审美意识与文化价值观念的特定的知识体系。当然这种观念在学生中间被发现、被接受的较少。

上述各种观念从不同的角度反映了学生对数学本身的理解和领会,对数学价值的认识和判断。当然有些观念对学生的学习起到积极促进作用,而有些则明显会导致消极的负面影响。

二、数学观对数学学习的影响分析数学观对学生数学学习究竟有多大的影响,目前尚缺乏确切的数据分析。但从历史材料和当前的研究表明,学生的数学观对其学习方式和学习成果是有相当影响的。

Schoenfeld研究表明学生思想观念的发展已经成为数学学习过程中的重要因素,数学信念与数学成绩之间存在明显的相关性。[2]Carlson研究发现一些普遍存在的和持续的数学观念在他们的后继学习中起着决定性作用。

[3]郑毓信指出,对于学生来说,观念的重要性在于数学学习不仅是指。

关于解析几何的毕业论文

转载请注明出处众文网 » 关于解析几何的毕业论文(数学毕业论文,矩阵方面的什么方向题目比较好写点)

资讯

钢筋工程量毕业论文(跪求一篇施工论文关于钢筋工程的)

阅读(102)

本文主要为您介绍钢筋工程量毕业论文,内容包括跪求一篇施工论文关于钢筋工程的,求关于毕业论文《钢筋工程施工方法》的开题报告谢谢啦急用,跪求一篇施工论文关于钢筋工程的。浅谈钢筋工程的质量控制 论文 【摘 要】钢筋工程是钢筋混凝土工

资讯

创业类毕业论文题目(创业计划书的选题有哪些)

阅读(112)

本文主要为您介绍创业类毕业论文题目,内容包括创业计划书的选题,在线等关于创业计划书的论文标题提纲,创业计划书的选题。创业计划书的选题有哪些比较好写的大学生创业计划书论文题目:浅谈大学生创新创业计划的重要性2、大学生创新创业能力

资讯

毕业论文是否新题目(查新题目和论文题目必须相同吗)

阅读(98)

本文主要为您介绍毕业论文是否新题目,内容包括毕业论文定题,是不是一定要是新的主题呢如果别人已经写过这个主,在毕业论文还没开始写的时候能换题目吗,在毕业论文还没开始写的时候能换题目吗。论文题目不可以相同的。如果论文题目和知网文

资讯

环工本科毕业论文(环境工程毕业论文有哪些题目可以选择)

阅读(110)

本文主要为您介绍环工本科毕业论文,内容包括环境工程毕业论文题目可以选择,请问环境艺术设计专业现在写什么毕业论文题目好,环艺设计的毕业设计。湖南省畜禽养殖废弃物年排放量估算 阿维菌素在柑桔园中的残留降解行为研究 镉在不同水稻品种

资讯

农学毕业论文工作量要求(农业论文要包括哪些内容急啊)

阅读(102)

本文主要为您介绍农学毕业论文工作量要求,内容包括论文的工作量是什么,毕业论文题目的难易和工作量怎么写,论文的工作量是什么。农业推广硕士专业学位研究生学位论文基本要求 农业推广硕士专业学位研究生的培养更侧重于“应用型”人才的培

资讯

java工资管理系统毕业论文(求工资管理系统程序+论文)

阅读(98)

本文主要为您介绍java工资管理系统毕业论文,内容包括求工资管理系统程序+论文,谁有工资管理系统论文啊,帮帮我~~~带程序和数据库啊,毕业论文工资管理信息系统设计与开发怎么写啊。去百度文库,查看完整内容>内容来自用户:赵倩倩第四章参考文献

资讯

韩语专业本科毕业论文(急求韩语专业毕业论文题目)

阅读(87)

本文主要为您介绍韩语专业本科毕业论文,内容包括韩国语专业本科生毕业论文一般要求多少字,急求韩语专业毕业论文题目,韩语专业毕业论文怎么写。虽然过去这么长时间了,相信你也早已顺利毕业了~写在这里希望对以后有需要的韩语专业毕业生有帮

资讯

钢筋工程量毕业论文(跪求一篇施工论文关于钢筋工程的)

阅读(102)

本文主要为您介绍钢筋工程量毕业论文,内容包括跪求一篇施工论文关于钢筋工程的,求关于毕业论文《钢筋工程施工方法》的开题报告谢谢啦急用,跪求一篇施工论文关于钢筋工程的。浅谈钢筋工程的质量控制 论文 【摘 要】钢筋工程是钢筋混凝土工

资讯

创业类毕业论文题目(创业计划书的选题有哪些)

阅读(112)

本文主要为您介绍创业类毕业论文题目,内容包括创业计划书的选题,在线等关于创业计划书的论文标题提纲,创业计划书的选题。创业计划书的选题有哪些比较好写的大学生创业计划书论文题目:浅谈大学生创新创业计划的重要性2、大学生创新创业能力

资讯

毕业论文是否新题目(查新题目和论文题目必须相同吗)

阅读(98)

本文主要为您介绍毕业论文是否新题目,内容包括毕业论文定题,是不是一定要是新的主题呢如果别人已经写过这个主,在毕业论文还没开始写的时候能换题目吗,在毕业论文还没开始写的时候能换题目吗。论文题目不可以相同的。如果论文题目和知网文

资讯

环工本科毕业论文(环境工程毕业论文有哪些题目可以选择)

阅读(110)

本文主要为您介绍环工本科毕业论文,内容包括环境工程毕业论文题目可以选择,请问环境艺术设计专业现在写什么毕业论文题目好,环艺设计的毕业设计。湖南省畜禽养殖废弃物年排放量估算 阿维菌素在柑桔园中的残留降解行为研究 镉在不同水稻品种

资讯

农学毕业论文工作量要求(农业论文要包括哪些内容急啊)

阅读(102)

本文主要为您介绍农学毕业论文工作量要求,内容包括论文的工作量是什么,毕业论文题目的难易和工作量怎么写,论文的工作量是什么。农业推广硕士专业学位研究生学位论文基本要求 农业推广硕士专业学位研究生的培养更侧重于“应用型”人才的培