1.高等代数论文应该怎样写
数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。
1 撰写数学论文应具有原则
1.1 创新性
作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。
1.2 科学性
科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。
1.3 规范性
规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。
2 撰写数学论文忌讳
2.1 大题小作
论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。
2.2 关门写稿
一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。
2.3 形式思维混乱
科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。
3 关于数学论文选题
数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:
(1)需要性 选题应从社会需要和科学发展的需要出发。
(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。
(3)科学性 选题应有最基本的科学事实作依据。
(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。
4 关于数学论文文风
4.1 语言表达确切
从选词,造句,段落,篇章,标点符号都应正确无误。
4.2 语言表达清晰简洁
语句通顺,脉络清楚,行文流畅,语言简洁。
4.3 语言朴实
语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。
2.数学史论文
先秦萌芽时期中国数学史 黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家──夏朝。
其后有商、殷两代(约1500 B。C。
- 1027 B。C。)
、及周朝(约1027 B。C。
- 221 B。 C。)
历史上又称公元前八世纪至秦王朝的建立(221 B。
C。)为春秋战国时期。
据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。
从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。
算筹的产生年代已不可考究,但可以肯定的是筹算在春秋时代已很普遍。 表示一个多位数字时,采用十进制值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。
算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理(西方称勾股定理)的特例。 战国时期,齐国人著的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。
墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。 此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
汉唐初创时期 这一时期包括从秦汉到隋唐1000多年间的数学发展,所经历的朝代依次为秦、汉、魏、晋、南北朝、隋、唐。 秦汉是中国古代数学体系的形成时期。
为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。 西汉末年(公元前一世纪)编纂的天文学著作《周髀算经》在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术的先驱。
此外,还有较复杂的开方问题和分数运算等。 《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年(公元前一世纪)。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。
它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。 魏晋时期中国数学在理论上有了较大的发展。
其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释。
刘徽注释《九章算术》,不仅对原书的方法、公式和定理进行一般的解释和推导,且在论述过程中多有创新,更撰写《海岛算经》,应用重差术解决有关测量的问题。刘徽其中一项重要的工作是创立割圆术,为圆周率的研究工作奠定理论基础和提供了科学的算法。
南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。 《孙子算经》、《夏侯阳算经》、《张丘建算经》就是这个时期的作品。
《孙子算经》给出「物不知数」问题,导致求解一次同余组问题;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。 祖冲之、祖??父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。
他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3。
1415926 隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是讨论土木工程中计算土方、工程的分工与验收以及仓库和地窖的计算问题。
唐朝在数学教育方面有长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人。
3.我的论文题目是中国古代数学与古希腊数学的比较,我要怎么写啊
古代希腊的数学,自公元前600年左右开始,到公元641年为止共持续了近 1300年。
前期始于公元前600年,终于公元前336年希腊被并入马其顿帝国,活动范围主要集中在驱典附近;后期则起自亚历山大大帝时期,活动地点在亚历山大利亚;公元641年亚历山大城被阿拉伯人占领,古希腊文明时代宣告终结。 而中国数学起源于遥远的石器时代,经历了先秦萌芽时期(从远古到公元前200年);汉唐始创时期(公元前200年到公元1000年),元宋鼎盛时期(公元1000年到14世纪初),明清西学输入时期(十四世纪初到1919年)。
一、最早的有关数学的记载的比较: 最早的希腊数学记载是拜占庭的希腊文的手抄本(可能做了若干修改),是在希腊原著写成后500年到1500年之间录写的。其原因是希腊的原文手稿没有保存下来。
而成书最早的是帕普斯公元三世纪撰写的《数学汇编》和普罗克拉斯(公元5世纪)的《欧德姆斯概要》。《欧德姆斯概要》一书是以欧德姆斯写的一部著作(一部相当完整的包括公元前335年之前的希腊几何学历史概略,但已经丢失)为基础的。
中国最早的数学专著有《杜忠算术》和《许商算术》(由《汉书·艺文志》记载可知),但这两部著作都已失传。《算术书》是目前可以见到的中国最早的,也是一部比较完整的数学专著。
这部著作于1984年1月,在湖北江陵张家山出土大批竹简中发现的,据有关专家认定《算术书》抄写于西汉初年(约公元前2世纪),成书时间应该更早,大约在战国时期。《算术书》采用问题集形式,共有60 多个小标题,90多个题目,包括整数和分数四则运算、比例问题、面积和体积问题等。
结论:中国是四大文明古国之一,所有的文化创造,均源自华夏大地。一般来讲,中国的数学成果较古希腊为迟。
二、经典之作的比较: 古希腊数学的经典之作是欧几里得的名著《几何原本》。亚历山大前期大数学家欧几里得完成了具有划时代意义工作——把以实验和观察而建立起来的经验科学,过渡为演绎的科学,把逻辑证明系统地引入数学中,欧几里得在《几何原本》中所采用公理、定理都是经过细致斟酌、筛选而成,并按照严谨的科学体系进行内容的编排,使之系统化、理论化,超过他以前的所有著作。
《几何原本》分十三篇。含有467个命题。
《几何原本》对世界数学的贡献主要是: 1. 建立了公理体系,明确提出所用的公理、公设和定义。由浅入深地揭示一系列定理,使得用一小批公理证出几百个定理。
2. 把逻辑证明系统地引入数学中,强调逻辑证明是确立数学命题真实性的一个基本方法。 3. 示范地规定了几何证明的方法:分析法、综合法及归谬法。
《几何原本》精辟地总结了人类长时期积累的数学成就,建工了数学的科学体系。为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机。
二千年来,一直被公认为初等数学的基础教材。 而中国的经典之作是《九章算术》。
不同的是,《九章算术》并不是一人一时写成的,它经历了多次的整理、删补和修订,是几代人共同劳动的结晶。大约成书于东汉初年(公元一世纪)。
《九章算术》采用问题集形式。全书分为九章,例举了246个数学问题,并在若干问题之后,叙述这类问题的解题方法。
《九章算术》对世界数学的贡献主要有: 1. 开方术,反应了中国数学的高超计算水平,显示中国独有的算法体系。 2. 方程理论,多元联立一次方程组的出现,相当于高斯消去法的总结,独步于世界。
3. 负数的引入,特别是正负数加减法则的确立,是一项了不起的贡献。 刘徽公元263年注《九章算术》,主要贡献是整理此前的中国古代数学成就,并用自己的理解加以评述,特别是一些数学方法的提炼,达到中国数学的高峰。
《九章算术》系统地总结了西周至秦汉时期我国数学的重大成就,是中国数学体系形成的重要标志,其内容丰富多彩,反映了我国古代高度发展的数学。《九章算术》对中国数学发展的影响,可与欧几里得《几何原本》对西方数学的影响一样,是非常深远的。
结论:《九章算术》和《几何原本》同为世界最重要的数学经典。《九章算术》以其实用、算法性称誉世界,《几何原本》以其逻辑演绎的思想方法风靡整个科学界。
二者是互相补充的,并非一个掩盖另一个。 古希腊数学的特点如下: 1.希腊人将数学抽象化,使之成为一种科学,具有不可估量的意义和价值。
希腊人坚持使用演绎证明,认识到只有用勿容置疑的演绎推理法才能获得真理。要获得真理就必须从真理出发,不能把靠不住的事实当作已知。
从《几何原本》中的 10个公理出发,可以得到相当多的定理和命题。 2.希腊人在数学内容方面的贡献主要是创立平面几何、立体几何、平面与球面三角、数论,推广了算术和代数,但只是初步的,尚有不足乃至错误; 3.希腊人重视数学在美学上的意义,认为数学是一种美,是和谐、简单、明确以及有秩序的艺术; 4.希腊人认为在数学中可以看到关于宇宙结构和设计的最终真理,使数学与自然界紧密联系起来,并认为宇宙是按数学规律设计的,并且能被人们所认识的。
中国数学的特点如下: 1.中国数学最基。
4.数学论文怎么写
“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。
一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。
其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。
综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。
(1) 写什么 写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。
论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。
文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。
“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。
我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。
例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。
王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”
其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。
如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。
两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。
否则就容易忽略了。
5.求高等代数的课程论文题目
课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。
思想3.《高等代数》中的。
方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法。
6.求一篇线性代数的论文
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。
线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易.
一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m*n矩阵,B是n*s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有
r(B)≤n-r(A)即r(A)+r(B)≤n
进而可求矩阵A或B中的一些参数
上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。
三、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
7.中国宋元数学发展史论文3000字以上
古代数学史: ①古希腊曾有人写过《几何学史》,未能流传下来。
②5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。 ③中世纪阿拉伯国家的一些传记作品和数学著作中,讲述到一些数学家的生平以及其他有关数学史的材料。
④12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。
近代西欧各国的数学史: 是从18世纪,由J.蒙蒂克拉、C.博絮埃、A.C.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经J.de拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。
19世纪末叶以后的数学史研究可以分为下述几个方面。 ①通史研究 代表作可以举出M.B.康托尔的《数学史讲义》(4卷,1880~1908)以及C.B.博耶(1894、1919D.E.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。
法国的布尔巴基学派写了一部数学史收入《数学原理》。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。
1972年美国M.克莱因所著《古今数学思想》一书,是70年代以来的一部佳作。 ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有J.L.海贝格、胡尔奇、T.L.希思等人。
洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。
60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。 ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。
查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。
他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。
④断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的著名论文。
对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于(J.-)H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。”
⑤历代数学家的传记以及他们的全集与《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。
⑥专业性学术杂志 最早出现于19世纪末,M.B.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。
中国数学史: 中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、制器、规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。
《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。
正史的《经籍志》则记载有数学书目。 在中国古算书的序、跋中,经常出现数学史的内容。
如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。
程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。 以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。
主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1。
8.数学发展史 论文 要详细 500字左右
分数分别产生于测量及计算过程中。
在测量过程中,它是整体或一个单位的一部份;而在计算过程中,当两个数(整数)相除而除不尽的时候,便得到分数。 一般可分为五期: 上古期:(2700B.C.~200B.C.)对数学有所创见的有伏羲氏、黄帝、隶首、缍等人。
其成就归纳如下: 1. 结绳:最古的记数方法,传为伏羲所创。 2. 书器:一种最古的记数工具,传为隶首所创。
3. 河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。 4. 八卦:传为周公所创,是最初的二进制法。
5. 规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。 6. 几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。
7. 九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。
8. 技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。
9. 算学教育:周朝时,把算数列为六艺之一,再小学时就受以珠算。 初等数学在此时期已有相当基础,算数与几何由于人类实际生活的需要已初步形成,但并无形成一定逻辑关联的系统。
中古期:(200B.C.~600A.D.由汉至隋)中国数学家对于算学已有可考据的著作。 1. 而对圆周率寄算最有成就者为祖冲之。
所得结果比之西方早一千多年。 2. 算经十书的编篡: 算经十书为:周髀,九章算术,孙子算经,张丘健算经,夏侯阳算经,五曹算经,海岛算经,五经算术,辑古算经及缀术,后因缀术亡失,而已数术记遗代之;其中辑古算经在唐朝才完成。
此时期的数学成就,可以从这十本算经中之其概略。数学成就可归纳为以下各点: (1)分数论的应用 (2)整数勾股形的计算 (3) 平方零约数:已建立开方的方法有两种 (4)方程论:已有联立一次方程的解法。
九章算数方程章为世界最早包含不只一个未知 数的算 式和联立方程组概念,并产生了正负数的概念。 (5)平面立体形的计算:一切直线图的面积和体积公式皆正确;圆面积、球体积为近似公式 (6)级数论上的成就:已有等差、等比问题产生。
(7)数论上的成就:孙子算经上的「物不知数」是一次同余式问题,由此以后所推广的中国剩余定理比西洋早了一千多年。 (8)数学教育制度的建立 近古期:(600A.D.~1367A.D.由唐到宋元) 分为前后两期,各以唐及宋元为代表。
可以说是中国数学史的黄金时代;数学教育制度更臻完善,民间研究数学的风气很盛。数学成就归纳如下: (1) 代数学上的成就:中国古代数学家很早就知道利用代数方法解决实际问题;这时期天元术的产生促使代数学向前发展,使其成为更完整的数学体系。
其它数学也获得更进一步的发展。数学家们掌握天元术之后,很快地把它应用到多元高次方程组而产生所谓的四元术;并利用天元术开方。
开方数也推广到多乘方,比西洋数学家的发现早约五百年。求数学高次方程的正根方法也已建立起理论根据。
(2) 几何学与三角学的成就:割圆术得到进一步的推广,除了平面割圆术外,球面割圆术也已产生,球面三角由此而初步建立起来。 (3) 数论上的成就:一次同余的理论基础扩大了应用范围,有八次联立一次同余式的问题出现,在整数论上是一个伟大的成就。
所用解一次同余式的方法为有名的辗转相除法,即西方数学家所谓欧几里得算法。 (4) 级数论上的成就:级数论在世界数学史上有着悠久的历史,中算家所论述的在此中占有一定位子。
由高阶等差级数研究中发明了招差数、垛积数。 (5) 纵横图说的研究:一些有名的纵横图(所谓方阵图)已经产生。
由以上所述,可以看出,有系统的代数学已建立起来,更多的数学方法与数学概念也得到更进一步的推广与发展。 婆罗门、天竺数学输入中国,但中国的数学并没有受到影响;同时中国的数学也输入了百济和日本。
近世纪:(1367A.D.~1750A.D.明初到清初) 为中国算学衰落时期,统治者对数学教育不注重,民间研习数学风气不盛。 回回历法在元末明初输入中国,至明末,应用回回历法已近尾声。
自利玛窦至中国之后,西洋历法、西洋数学也随之输入中国。当时还有人研究中算,但由于中算不如西算的简明有系统,故中国古算陷入停顿状态而得不到新的发展。
西洋数学输入的有笔算、筹算、代数学、对数术、几何学、平面及球面三角术、三角函数表、比例对数表、割圆术及圆锥曲线说。 著名的天元术停滞不前,珠算随着实际生活的需要而产生,很多有关珠算实用算数书陆续出版;珠算术的发明是中算的革命、我国的伟大成就。
清初的一些大数学家都致力于西洋数学的研究,编写了数学各科的入门书籍。中国数学输入朝鲜及把元明数学输入日本。
最近世期:(1750A.D.~1910A.D.清干隆三十七到清末) 西算输入告一段落。这时学术潮流偏向古典考证一路发展,数学研究也转到古代数学方面去,对算经十书与宋元算书加以传刻与研讨到达最高峰。
当时数学家很多都能兼通中西数学,在高等数学方面获得相当的成就。 对圆周率解析法作深入的探讨,级数论、方程论及数论得到进一步的研究,。
9.求一篇线性代数的论文
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。
线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易.
一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m*n矩阵,B是n*s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有
r(B)≤n-r(A)即r(A)+r(B)≤n
进而可求矩阵A或B中的一些参数
上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。
三、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
转载请注明出处众文网 » 本科毕业论文代数学(高等代数论文应该怎样写)