1.数学论文题目有哪些
数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。下面学术堂整理了一部分数学论文题目供大家参考。
1、数学模型在解决实际问题中的作用
2、中学数学中不等式的证明
3、组合数学与中学数学
4、构造方法在数学解题中的应用
5、高中新教材中数学教学方法探讨
6、组合数学恒等式的证明方法
7、浅谈中学数学教育
8、浅谈中学不等式的几何证明方法
9、数学教育中学生创造性思维能力的培养
10、高等数学在初等数学中的应用
11、向量在几何中的应用
12、情境认识在数学教学中的应用
13、高中数学应用题的编制和一些解题方法
14、浅谈反证法在中学教学中的应用
15、探索证明线段相等的方法
2.数学论文题目有哪些
数学中的研究性学习
数字危机
中学数学中的化归方法
高斯分布的启示
a2+b2≧2ab的变形推广及应用
网络优化
泰勒公式及其应用
浅谈中学数学中的反证法
数学选择题的利和弊
古典文学常见论文一词,谓交谈辞章或交流 思想。 当代,论文常用来指进行各个学术 领域的研究和描述学术研究成果的 文章,简称之为论文。它既是探讨问题进行学术研究的一种 手段,又是描述学术研究成果进行学术交流的一种工具。它包括 学年论文、毕业论文、学位论文、科技论文、成果论文等。
中文名:论文
外文名:The paper
类 型:学年论文、毕业论文、学位论文等
作 用:描述研究成果
意 义:表达自己的学术成果
要 求:有引言,正文,参考资料等
字 数:一般1000以上
3.毕业论文题目选择
1 函数逼近 2数的进制问题 3无穷维矩阵与序列Bannch空间的关系 4 多媒体课件教学设计----若干中小学数学教学案例 5 从一维,二维空间到欧氏空间 6 初中数学新课程数与代数学习策略研究 7 初中数学新课程统计与概率学习策略研究 8 对中学数学研究性学习开展过程及其途径的思考 9 函数列运算的顺序交换及条件 10儒歇定理的推广和应用(复变函数-辐角原理) 11解析函数的各种等价条件及其应用 12特征函数在概率论中的应用 13数学史与中学教育 14让生活走进数学,将数学应用于生活——谈xx数学方法的应用 15数学竞赛中的数论问题 16新旧教材的对比与研究 17近世代数在中学数学中的应用 18随机变量分布规律的求法 19简述概率论与数理统计的思想方法及其应用 20无穷大量存在的意义 21中学数学竞赛中参数问题 22例谈培养数学思维的深刻性 23圆周率与中学数学史 24从坐标系到向量空间的基 25谈谈反证法 26一致连续性的判断定理及性质 27课堂提问和思维能力的培养 28从数学高考试题的演变看中学数学教育改革 29凸函数及其在证明不等式中的应用 30极值的讨论及其应用 31正难则反,从反面来考虑问题 32实数的构造,完备性及它们的应用 33谈数学创新思维的训练 34简述期望的性质及其作用 35简述概率论与数理统计的思想和方法 36无穷乘积 37由递推式求数列的通项及和 38浅谈划归思想在数学中的应用 39凸函数的定义性质及应用 40行列式的计算方法 41可行解的表式定理的证明 42直觉思维在中学数学中的应用 43高等数学在中学数学中的应用 44充分挖掘例题的数学价值和智力开发功能 45数学思想方法的一支奇葩-----数学猜想初探 46关于实变函数中叶果罗夫定理的鲁津定理的证明 47关于黎曼积分的定义 48常微分方程的历史发展 49概率论发展史及其简单应用 50中学数学教学中创新思维的培养策略 51对数学教学中使用多媒体的几点思考 52矩阵特征值的计算方法初探 53数学结合思想及其应用 54关于上.下确界,上.下极限的定义,性质及应用 55复均方可积随机变量空间的讨论 56浅谈中学数学的等价转换 57车灯线光源的优化设计模型 58中学数学中的变式教学设计 59欧几里得第五公设产生背景及其对数学发展影响 60中学数学问题解决的学习策略研究 61变分法 62抽屉原理的应用及推广 63浅议函数迭代及其表达式 64加强数形结合,提高解题能力 65函数性质的应用 66求初等函数的值域 67中学数学应用意识的研究 68初中数学新课程空间与图形学习策略与研究 69浅谈分类讨论及解题应用 70排序方法及其应用 71从数学应用意识的培养看数学基础教育改革 72函数的凸性及其在不等式中的应用 73建构主义理论指导下的数学教学案例 74中学课程数学教学思想方法教学初探 75大学生数学素质教育思考 76数学归纳法教学探究 77师范学生高等数学课程内容设置的探讨 78统计学在证券市场中的应用 79关于全概率公式及其应用的研究 80数学开放式教学的基本理念与策略 81变量代换法与常微分方程的求解 83奥赛中组合计算方法及应用 84代数结构中同态及同构的性质 85综述十八世纪著名数学家及其工作 86谈谈不定方程 87从不定方程到孙子兵法 88略谈我国古代的数学成就 89分类思想在中学数学中的应用 90从笛卡尔的“万能代数模型”谈函数与方程的思想 91数学美在中学数学教学中的育人功能初探 92新课程理念下中学教师行为的改变 93对各种导数的研究 94不等式解法大观 95谈谈“隐函数” 96有限维矩阵的范数计算与估计 97数学奥赛中数论问题的解题方法研究 98猜想和联想 99微分方程积分因子的研究 100数的趣谈 101泰勒公式 102解析函数的孤立奇点的分类及其判断方法 103最大模原理的推广及其应用 104π的奥秘——从圆周率到统计 105对现代信息技术辅助数学及其发展的几点思考 106无理数e的发现及其应用 107初中数学新课程综合实践活动策略研究 108闭区间套定理的推广和应用 109函数的上下极限及其应用 110度量空间 111关于多值函数的解析理论探讨 112数论中一两个问题 113正多边形的对角线与边长的公度问题 114比较函数法在常微分方程中的应用 115数学分析的直观与严密 116浅谈中学数学中的构造法 117谈待定系数法在中学解题中的应用 118常微分方程与初等数学 119求随机函数的分布函数和分布密度的方法 120条件期望的性质及其应用 121从高中数学课程改革看未来的高师数学系的本科教学 122课程改革中未来高中数学教师角色的扮演 123向量代数在中学中的应用 124凸函数的等价命题及其应用 125带权图的若干应用 126有界变差函数的定义及其性质 127初等函数的极值 128数学竟赛中的不等式问题 129常微分方程各种解的定义,关系及判定方法 130三阶变系数线性常微分方程 131常微分方程的发展及应用 132常微分方程的初等解法求解技巧 133常系数线性方程组基解矩阵的计算 134高阶方程的降阶计巧。
4.我想写计算数学方面的毕业论文,但是不知道要写什么题目,求推荐
首先,你要老老实实地看完《数值计算》这本书,也很薄的一点书(千万不要象看小说那样),不在于多,你要想,要学会思维.专家们写的书都大同小异内容原理都一样,所以你说"越多越好,我好有个选择!!"你的学习态度是不是值得你去反思了?
必须先解决这个思想问题,否则你根本静不下来,坐不住,面对浩瀚的计算数学的学术海洋,你的心到底飞到哪里飘荡去了你连你自己都不知道.
思想问题是个大问题,入学时就要慢慢培养,这是个非常艰巨的过程.要学会自己调适,教育学心理学知识对低等动物适合也同时对高等动物也适合,所以要学以致用.如果有一天你不在急功近利,彻底静下心来开始严谨治学时,我再给你送如下心得.如果态度还是不到位的话,如下心得无效.你还是无法受益终身,而是痛苦终身.这个心得就是:
1.理论具有很强的对象性;
2.理论具有很强的系统性;
3.理论经过大量的实践被证明是正确的.
所以当你的计算数学的理论知识掌握到某个程度时问题很自然地就出来了,毕业论文唾手可得.
5.数学毕业论文,矩阵方面的什么方向题目比较好写点
什么是几何? 数学是研究数量关系和空间形式的一门科学.几何则是侧重研究空间形式. 相传古埃及的尼罗河每年都洪水泛滥,把两岸的土地淹没,人们无法辨认自己的田地,久而久之,人们利用测量与画图来测出土地的周界并计算面积,因而积累了大量的图形知识.后来希腊商人到埃及学会了测量与绘图知识,到公元前338年,希腊人欧几里得对这些知识作了系统的总结和整理,写出了一部关于几何的经典著作——《几何原本》,这就形成了一本完整的几何学.1607年,我国数学家徐光启和意大利传教士利玛窦一起翻译了《几何原本》,同学们学的几何课本就源于这部书. 十八世纪德国著名数学家高斯在19岁时就用圆规和直尺作出了正十七边形.1500年前,我国数学家祖冲之,计算出圆周率在3.1415926与3.1415927之间,他们为几何学的发展作出了杰出的贡献,同学们现在学习的是平面几何,高中要学习立体几何、平面解析几何,大学还要学习微分几何,空间解析几何,黎曼几何等. 二 如何学好几何? 学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”.其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的. 第一 要学好概念.首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映.注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质…… 第二 要学好几何语言.几何语言又分为文字语言和符号语言,几何语言总是和图形相联系.如文字语言:∠1和∠2互为补角,图形见下图,符号语言:∠1+∠2=180°,或∠1=180°-∠2,或∠2=180°-∠1. 第三 要进行直观思维.即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力. 第四 要富于想像.有的问题既要凭借图形,又要进行抽象思维.比如,几何中的“点”没有大小,只有位置.现实生活中的点和实际画出来的点就有大小.所以说,几何中的“点”只存在于大脑思维中.“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中. 第五 要边学习、边总结、边提高.几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结.比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线. 同学们只要认真学习,注意听讲,勤于思考,独立完成作业,是一定能学好几何的.天下无难事,只要肯登攀,胜利将属于你们。
6.数学论文用那些题材写好写一些
重点:数模论文的格式及要求难点:团结协作的充分体现一、写好数模论文的重要性1. 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据.2. 数模论文是培训(或竞赛)活动的最终成绩的书面形式。
3. 写好论文的训练,是科技论文写作的一种基本训练。二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性;结果的合理性;表述的清晰程度2,数模论文的结构0、摘要1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等5、模型检验:结果表示、分析与检验,误差分析等6、模型评价:本模型的特点,优缺点,改进方法7、参考文献:限公开发表文献,指明出处8、附录:计算框图、计算程序,详细图表三、需要重视的问题0.摘要表述:准确、简明、条理清晰、合乎语法。
字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。
还可作那些推广。1、建模准备及问题重述:了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。
在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。2、模型假设、符号说明 基本假设的合理性很重要(1)根据题目条件作假设; (2)根据题目要求作假设;(3)基本的、关键性假设不能缺;(4)符号使用要简洁、通用。
3、模型的建立(1)基本模型1) 首先要有数学模型:数学公式、方案等2) 基本模型:要求完整、正确、简明,粗糙一点没有关系(2)深化模型1)要明确说明:深化的思想,依据,如弥补了基本模型的不足……2)深化后的模型,尽可能完整给出3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。
▲能用初等方法解决的、就不用高级方法; ▲能用简单方法解决的,就不用复杂方法; ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。 4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在 ▲建模中:模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析,模型检验; ▲推广部分。
5)在问题分析推导过程中,需要注意的: ▲分析要:中肯、确切; ▲术语要:专业、内行; ▲原理、依据要:正确、明确; ▲表述要:简明,关键步骤要列出; ▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。4、模型求解(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密;(2)需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,要说明采用此软件的理由,软件名称;(3)计算过程,中间结果可要可不要的,不要列出。(4)设法算出合理的数值结果。
5、模型检验、结果分析(1) 最终数值结果的正确性或合理性是第一位的 ;(2)对数值结果或模拟结果进行必要的检验。 当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进2 如何写好数学建模论文 暴强 不看会后悔哦 ! (3)题目中要求回答的问题,数值结果,结论等,须一一列出;(4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据; (5)结果表示:要集中,一目了然,直观,便于比较分析。
(最好不要跨页)▲数值结果表示:精心设计表格;可能的话,用图形图表形式。▲求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。
最后结论要明确。6.模型评价 优点要突出,缺点不回避。
若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。
7、参考文献限于公开发表的文章、文献资料或网页规范格式:[1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社,1999.[2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20-23.8、附录 详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。
主要结果数据,应在正文中列出。9、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题 问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关键数据 每个量,列出一组还是多组数――要计算一组还是多组数…… 10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。
实际问题要求。四、建模理念1. 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,。
7.小学数学教育方向的论文标题有哪些
[数学论文] 如何培养学生学习数学的兴趣[原创] [数学论文] 数学概念学习的几种方法[原创] [数学论文] 简谈分数“1/2”和小数“0.5” 的重要性与三重性质[原创] [数学论文] 简谈分数“1/2”和小数“0.5”的重要性与三重性质[原创] [数学论文] 创造性思维与数学教学探究[原创] [数学论文] 小学数学应用题的规律[原创] [数学论文] 浅谈小学应用题教学的一般规律[原创] [数学论文] 浅议现代教育技术与高中数学教学整合的教学模式 [数学论文] 浅议新课程标准下高中数学教学 [数学论文] 如何在数学教学过程中培养和激发学生学习的兴趣 [数学论文] 数学家庭作业分层 [数学论文] 试论数学课堂教学中教师的角色定位 [数学论文] 职业高级中学数学教学方法初探 [数学论文] 自然灾害预测与预警机制探索[原创] [数学论文] 如何激发学生想学数学 [数学论文] 基于单片机的自动节水控制系统 [数学论文] 三角函数的解题应用 [数学论文] 如何培养和激发学生学习数学的兴趣 [数学论文] 小学数学课堂应该对学生创造性思维进行培养 [数学论文] 五论《数学基础》数值逻辑有理数系基本理论自身的深刻变革 [数学论文] 为什么1+1=2?!——试论《数学基础》有理数系数值逻辑基本理论自身的深刻变革 [数学论文] 解析变换的特性 [数学论文] 小学应用题七环教学法 [数学论文] 创设良好的学习环境,营造创新教育氛围 [数学论文] 时空箴言。
8.大学数学论文
如何写数学论文:选题与写作方法
引言
在审阅数学论文过程中发现很多论文内容简单,或是一两个习题证明或是将教材内容,他人论文组合改编,简单重复,更有甚者直接抄袭。很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。
数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。
1 撰写数学论文应具有原则
1.1 创新性
作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。
1.2 科学性
科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。
1.3 规范性
规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。
2 撰写数学论文忌讳
2.1 大题小作
论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。
2.2 关门写稿
一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。
2.3 形式思维混乱
科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。
3 关于数学论文选题
数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:
(1)需要性 选题应从社会需要和科学发展的需要出发。
(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。
(3)科学性 选题应有最基本的科学事实作依据。
(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。
4 关于数学论文文风
4.1 语言表达确切
从选词,造句,段落,篇章,标点符号都应正确无误。
4.2 语言表达清晰简洁
语句通顺,脉络清楚,行文流畅,语言简洁。
4.3 语言朴实
语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。
转载请注明出处众文网 » 数学毕业论文哪个题目好(数学论文题目有哪些)