1.高频小信号调谐放大器课程设计
通信电子线路课程设计说明书 高频小信号调谐放大器 系 、部: 电气与信息工程系 学生姓名: 陈 颖 指导教师: 贾雅琼 职称 讲师 专 业: 电子信息工程 班 级: 电子0903班 完成时间: 2011年12月6日 引 言 随着电子技术的飞跃发展,社会发展步入了信息时代,随着信息时代对人才高素质和信息化的要求,随着高等教育发展的趋势,人们的生活水平提高,对精神文明生活的要求也跟着提高,这对电子领域提出了跟更高的要求。
通信电子线路学是一门应用很广泛的科学技术,发展及其迅速。要想学好这门技术,首先是基础理论的系统学习,然后要技术训练,进而培养我们对理论联系实际的能力,设计电路的能力,实际操作的能力,以及培养正确处理数据、分析和综合实验结果、检查和排除故障的能力。
同时也加深我们对电子产品的理解。 在无线通信中,发射与接收的信号应当适合于空间传输。
所以,被通信设备处理和传输的信号是经过调制处理过的高频信号,这种信号具有窄带特性。而且,通过长距离的通信传输,信号受到衰减和干扰,到达接收设备的信号是非常弱的高频窄带信号,在做进一步处理之前,应当经过放大和限制干扰的处理。
这就需要通过高频小信号放大器来完成。这种小信号放大器是一种谐振放大器。
高频小信号放大器广泛用于广播、电视、通信、测量仪器等设备中。高频小信号放大器可分为两类:一类是以谐振回路为负载的谐振放大器;另一类是以滤波器为负载的集中选频放大器。
它们的主要功能都是从接收的众多电信号中,选出有用信号并加以放大,同时对无用信号、干扰信号、噪声信号进行抑制,以提高接收信号的质量和抗干扰能力。 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。
高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 任务书 一、设计题目:高频小信号调谐放大器 二、适用班级:电子0901~0903 三、指导教师:贾雅琼 四、设计目的与任务: 学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《通信电子线路》中所学的理论知识和实验技能,掌握通信电子系统的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。
五、设计要求 设计一个高频小信号调谐放大器。要求中心频率为20MHz,电压增益,通频带为4MHz,负载电阻100,电源电压+12V。
概 序 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。
高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器;按频带分为:窄带放大器、宽带放大器;按电路形式分为:单级放大器、多级放大器;按负载性质分为:谐振放大器、非谐振放大器;高频小信号放大器的特点: 频率较高中心频率一般在几百kHz到几百MHz频带宽度在几KHz到几十MHz,故必须用选频网络小信号信号较小故工作在线性范围内(甲类 放大器)即工作在线形放大状态。 采用谐振回路作负载,即对靠近谐振频率附近的信号有较大的增益,对远离谐振频率附近的信号其增益迅速下降,即具有选频放大作用。
其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。
其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。
第一章 高频小信号放大器主要性能指标简介 高频小信号放大器的主要性能指标包括电压增益与功率增益、频带宽度、矩形系数、工作稳定性。 1. 电压增益与功率增益 电压增益等于放大器输出电压与输入电压之比;而功率增益等于放大器输出给负载的功率与输入功率之比。
2.频带宽度 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯称电压的放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW,其表达式: BW=2Δ= 式1-1-1 上式中为谐振回路的有载品质因数。可知放大器的谐振电压放大倍数Av与通频带BW的关系为: 式1-1-2 上式说明,当晶体管选定即确定,且回路总电容为定值时,谐振放大倍数Avo与通频带BW的乘积为一常数。
这与低频放大器的增益为一常数的概念是相同的。由于谐振回路失调后电压放大倍数下降,所以放大器的频率特性曲线如图1-1-1所示。
由式1-1-1可得: 式1-1-3 通频带越宽放大器的电压放大倍数越小。要得到一定宽度的通频带,同时又能提高放大器的电压增益,由式1-1-2可知,除了选用较大的晶体管外,。
2.基于multisim10.1的高频小信号谐振放大电路的分析怎么写啊
一个小信号谐振放大器由晶体管(或场效应管)与 并联谐振回路组成。采用谐振回路作为负载,能够实现在一系列无线电信号中选择并放大有用信号,而有效地抑制其他的无用信号。
1.| Yfe |决定晶体管放大倍数,Yoe决定晶体管的损耗。Auo为了增大电压增益振幅 ,应选取 |Yfe| 大, Yoe小的晶体管。
2.为了增大电压增益振幅 ,要求负载电导小,即负载电阻要大;如果负载是下一级放大器,则要求 Gie 小。
3回路谐振电导 越小, Auo 越大。而 Geo 取决于回路空载品质因数 Q0 ,与 Q0 成反比,所以要求品质因数要大。
.4 Auo 与接入系数有关,同时接入系数又会影响回路有载品质因数,而有载品质因数又将影响通频带。因此接入系数的选择要全面考虑。
实际放大器的设计在满足通频带和选择性的前提下,尽可能提高电压增益。
3.高频小信号调谐放大器课程设计
通信电子线路课程设计说明书高频小信号调谐放大器系 、部: 电气与信息工程系 学生姓名: 陈 颖 指导教师: 贾雅琼 职称 讲师 专 业: 电子信息工程 班 级: 电子0903班 完成时间: 2011年12月6日 引 言随着电子技术的飞跃发展,社会发展步入了信息时代,随着信息时代对人才高素质和信息化的要求,随着高等教育发展的趋势,人们的生活水平提高,对精神文明生活的要求也跟着提高,这对电子领域提出了跟更高的要求。
通信电子线路学是一门应用很广泛的科学技术,发展及其迅速。要想学好这门技术,首先是基础理论的系统学习,然后要技术训练,进而培养我们对理论联系实际的能力,设计电路的能力,实际操作的能力,以及培养正确处理数据、分析和综合实验结果、检查和排除故障的能力。
同时也加深我们对电子产品的理解。在无线通信中,发射与接收的信号应当适合于空间传输。
所以,被通信设备处理和传输的信号是经过调制处理过的高频信号,这种信号具有窄带特性。而且,通过长距离的通信传输,信号受到衰减和干扰,到达接收设备的信号是非常弱的高频窄带信号,在做进一步处理之前,应当经过放大和限制干扰的处理。
这就需要通过高频小信号放大器来完成。这种小信号放大器是一种谐振放大器。
高频小信号放大器广泛用于广播、电视、通信、测量仪器等设备中。高频小信号放大器可分为两类:一类是以谐振回路为负载的谐振放大器;另一类是以滤波器为负载的集中选频放大器。
它们的主要功能都是从接收的众多电信号中,选出有用信号并加以放大,同时对无用信号、干扰信号、噪声信号进行抑制,以提高接收信号的质量和抗干扰能力。 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。
高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。任务书一、设计题目:高频小信号调谐放大器二、适用班级:电子0901~0903三、指导教师:贾雅琼四、设计目的与任务:学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《通信电子线路》中所学的理论知识和实验技能,掌握通信电子系统的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。
五、设计要求设计一个高频小信号调谐放大器。要求中心频率为20MHz,电压增益,通频带为4MHz,负载电阻100,电源电压+12V。
概 序高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。
高频小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器;按频带分为:窄带放大器、宽带放大器;按电路形式分为:单级放大器、多级放大器;按负载性质分为:谐振放大器、非谐振放大器;高频小信号放大器的特点:频率较高中心频率一般在几百kHz到几百MHz频带宽度在几KHz到几十MHz,故必须用选频网络小信号信号较小故工作在线性范围内(甲类 放大器)即工作在线形放大状态。 采用谐振回路作负载,即对靠近谐振频率附近的信号有较大的增益,对远离谐振频率附近的信号其增益迅速下降,即具有选频放大作用。
其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。
其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。
第一章 高频小信号放大器主要性能指标简介高频小信号放大器的主要性能指标包括电压增益与功率增益、频带宽度、矩形系数、工作稳定性。1. 电压增益与功率增益电压增益等于放大器输出电压与输入电压之比;而功率增益等于放大器输出给负载的功率与输入功率之比。
2.频带宽度由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯称电压的放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW,其表达式:BW=2Δ= 式1-1-1上式中为谐振回路的有载品质因数。可知放大器的谐振电压放大倍数Av与通频带BW的关系为: 式1-1-2上式说明,当晶体管选定即确定,且回路总电容为定值时,谐振放大倍数Avo与通频带BW的乘积为一常数。
这与低频放大器的增益为一常数的概念是相同的。由于谐振回路失调后电压放大倍数下降,所以放大器的频率特性曲线如图1-1-1所示。
由式1-1-1可得: 式1-1-3通频带越宽放大器的电压放大倍数越小。要得到一定宽度的通频带,同时又能提高放大器的电压增益,由式1-1-2可知,除了选用较大的晶体管外,还应尽。
4.怎样提高小信号谐振放大器的稳定性
不稳定的原因:等效电路中存在Cb'e,故晶体管存在着反向传输导纳yre,放大器的输出电压可通过晶体管的yre反向作用到输入端,引起输入电流的变化,这种反馈作用将可能引起放大器产生自激等不良后果。
1.中和法:所谓中和,是在晶体管放大器的输出与输入之间引入一个附加的外部反馈电路,以抵消晶体管内部yre的反馈作用。
2.失配法:信号源内阻不与晶体管的输入阻抗匹配,晶体管输出端的负载不与本级晶体管的输出阻抗匹配。实质是降低放大器的电压增益,以确保满足稳定的要求。可以选用合适的接入系数p1、p2或在谐振回路两端并联阻尼电阻来实现降低电压增益。在实际运用中,较多的是采用共射-共基级联放大器。
5.引起小信号谐振放大器不稳定的因素有哪些如果实验中出现自激现象,
小孩,写实验报告呢啊~?我也要写哦
在高频调谐放大器中,由于晶体体管集电结电容的内部反馈Cb'c,形成了放大器的输出电路与输入电路之间的相互影响。它使高频调谐放大器存在工作不稳定的问题.
克服自激的方法
由于晶体管由反向传输导纳存在,实际上晶体管为双向器件。为了抵消或减少反向传输导纳的作用,应使晶体管单向化。
单向化的方法有两种:一种是消除反向传输导纳的反馈作用,称为中和法;另一种是使负载电导gL或信号源电导的数值加大,使得输人或输出回路与晶体管失去匹配,称为失配法。
找得那么辛苦,楼主追加分啥~
6.求一份低频功率放大器的毕业设计论文
功率放大电路设计
摘要:本文总结了电子设计实验中常用的几种功率放大电路的设计方案,针对不同的设计要求和设计条件从电路搭建、注意事项及测试结果进行了说明,能满足大多数实验电路设计的需要。
关键词:功率放大;推挽输出;丙类功放
一.前言
在电子电路设计中,很多系统需要对输出信号进行放大,以提高其带负载能力,驱动后级电路,因此就要对信号进行功率放大。功率放大器的主要性能指标有输出功率及效率,其按照电流导通角的不同,可分为甲、乙、丙三类工作状态。甲类放大器电流的通角为180度,适用于小信号低频放大,效率最低;乙类放大器的通角约为90度,适于宽带大功率工作,大多数集成运放的末级输出都采用乙类推挽形式;丙类放大器的电流的通角则小于90度,电流波形失真太大,只适于以调谐回路为负载的窄带放大,但效率较甲、乙类高。【1】
二.电路设计
(一)大电流高摆幅运放
若不考虑成本限制,可直接采用大输出电流、高摆幅运算放大器作为输出级。设计重点在于运放的选择及电路连接。市面上有各种性能的Buffer以及可用以驱动的运放,它们能满足大多数设计的要求。专门的驱动芯片如BUF634,其输出电流达250mA,摆率为2000V/us。美国德州仪器公司也有许多相关产品,如THS3121,输出电流可达450mA,摆率达1500V/us。设计的关键在于芯片的正确使用,由于大多数为电流型运放,故反馈电阻的选取很重要,另外由于处理的是高频信号,所以电源去耦,电路布线方面也须十分注意。经实验测试,THS3121在反馈电阻取470Ω、增益为2时在50Ω负载时小信号-3dB带宽达100MHz,-0.1dB带宽达30MHz,并且在电压峰-峰值为10V的输出状态下,频率大于10MHz时仍无失真现象。
(二)互补对管推挽输出
若对功率放大要求不高,可采用分立元件搭建,以互补对管推挽电路作为输出级。设计的关键在于根据系统要求选择合适的互补对管。互补对管采用2SD667和2SB647,其特征频率为140MHz,集电极功率耗散为0.9W,适合低频功率放大。前级放大负反馈由输出引入,使得通频带更加平坦。
(三)直接功率合成
在手头没有合适的驱动芯片时,可以采用三极管直接搭建,虽在实际应用中较少,但在实验室条件下仍是不错的选择。直接功率合成的先决条件是各路参数要对称。要求VT1和VT2、VT3和VT4参数对称,R2=R3,R4=R5,R11=R12等。输入功率在A点一分为二,分两路分别进行放大,在C点合二为一。
(四)单管丙类功率放大
以上三种都是宽频带非谐振功率放大,效率较低,而在无线通信设计中,效率是发射机的主要性指标之一,丙类谐振功率放大较甲类、乙类相比具有更高的效率。三极管基极采用自给偏压电路,集电极采用RLC并联谐振回路,滤除谐波分量,采用π网络作为输出滤波匹配网络,实际参数值可根据所要求的谐振频率具体设计,在此不赘述。
结语
本文通过对不同条件下功率输出级设计提出相应的方案,并经过实际实验测试,效果良好。但在电子设计实验中,较少涉及电力系统,对信号的功率放大要求不是很高,本文仅对系统中常用的简单功率放大进行总结与实验验证,而实际应用中的功率放大电路远不止如此简单。
参考文献:
【1】董尚斌,等。电子线路(1)。北京:清华大学出版社,2006.
【2】黄根春,等。电子设计教程。北京:电子工业出版社,2007.8.
【3】高吉祥。高频电子线路设计。北京:电子工业出版社,2007.5.
转载请注明出处众文网 » 小信号谐振放大器毕业论文(高频小信号调谐放大器课程设计)