行列式本科毕业论文(毕业论文《行列式的本质及其可完全替代性》怎么写)

1.毕业论文《行列式的本质及其可完全替代性》怎么写

写论文是科研最基础的。

第一,你在写论文的时候先确定你的论点,也就是你这篇论文是关于什么,是要论证什么东西,一般来说,也只有你对这个比较熟悉有一定的基础才能进行研究。

第二,在确定好论文方向后你可以查阅相关的书籍,一般包括一手和二手资料,一手就是关于你论证对象的资料,二手就是另外一些学者对于该对象的研究成果,比如你要研究鲁迅的话,第一手资料就是鲁迅的作品,第二首资料就是其他人关于鲁迅作品研究的成果。这些成果你都可以引用,但是在引用的时候必须注明出处,也就是你用了谁的观点,包括作者、作品名、出版社第几年第几版、第几页,这些写在论文的结尾处,以注释说明。

第三,摘要,摘要就是你论文研究的论点是什么,大概内容是什么,你有什么新看法。摘要一般不多,规范论文的摘要字数在200到500字之间,一般300字左右。

第四,关键字,关键字是抽取你论文的最主要的字眼,但是这字眼能明白看出你论文的大意的。比如你研究鲁迅的《阿Q正传》的,关键字可以有:鲁迅,阿Q正传,国民性,精神胜利法,革命。一般关键字为3到5个。

第五,正文,主要就是关于你的论点展开论述了。一般的论文的都在5000字以上,如果你是一个学生,小论文的话字数一般3000到5000字,而且标准也不高。当然,毕业论文除外。

第六,注释,注释就是关于你的参考作品,标明出处,也可以对于某些观点再做论述,但是一般字数不要太多。

第七,如果你有指导教师的话,在此表示感谢,有则可,没有不强求。 如果你写的是很重要的论文的话,一般还有英文摘要,错别字概率一般在万分之一,如果不是很严格的论文也不会有这些要求。最关键的就是正文了,一般你要有自己新颖的观点,但是不能哗众取宠,牵强附会,还要有结构层次,不能杂乱无章,也就是由浅到深。论文是实证性的,最好不要加入你的主观价值判断,就是最好不要有“应该”两个字,你不能告诉别人应该怎么做。

2.有没有关于行列式的性质及应用的自考论文

引言: 问题的提出在实践中存在许多解n元一次方程组的问题,如① ② 运用行列式可以解决如②的n元一次方程组的问题。

2 2.1排列定义1 由1.2……n组成的一个有序数组称为一个 级排列。n级排列的总数为(n的阶乘个)。

定义2 在一个排列中,如果一队数的前后位置与大小顺序相反,即前面的大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。

定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列。 2.2行列式定义(设为n阶):n阶行列式是取自不同行不同列的n个元素的乘积的代数和,它由 项组成,其中带正号与带负号的项各占一半, 表示排列 的逆序数。

2.3 阶行列式具有的性质性质1 行列式与它的转置行列式相等.( ) 事实上,若记 则 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行( )或两列( ),行列式变号. 例如 推论 若行列式 有两行(列)完全相同,则 . 证明: 互换相同的两行, 则有 , 所以 . 性质3 行列式某一行(列)的所有元素都乘以数 ,等于数 乘以此行列式,即推论:(1) 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) 中某一行(列)所有元素为零,则 ;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即.证: 由行列式定义性质6 行列式 的某一行(列)的各元素都乘以同一数 加到另一行(列)的相应元素上,行列式的值不变 ,即计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 2.4行列式的计算2.4.1数字型行列式的计算1. 三角化法例1 .解: 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…, 列都加到第1列上,行列式不变,得.例2 .解: 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算.2. 2.递推法 例3 计算行列式 之值。解 把各列均加至第1列,并按第1列展开,得到递推公式继续使用这个递推公式,有 而初始值 ,所以 例4 计算 .解:., ,,3.数学归纳法当 与 是同型的行列式时,可考虑用数学归纳法求之。

一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。

例5 计算行列式 .解:结合行列式的性质与次行列式本身的规律,可以采用数学归纳法对此行列式进行求解当 时, 假设 时,有 则当 时,把 按第一列展开,得由此,对任意的正整数 ,有4.公式法例6 计算行列式 之值。解 由于 ,故用行列式乘法公式,得因 中, 系数是+1,所以 。

2.4.2行列式的概念与性质的例题例7 已知 是6阶行列式中的一项,试确定 的值及此项所带的符号。解 根据行列式的定义,它是不同行不同列元素乘积的代数和。

因此,行指标 应取自1至6的排列,故 ,同理可知 。直接计算行的逆序数与列的逆序数,有 。

亦知此项应带负号。2.4.3抽象行列式的计算例8 若4阶矩阵A与B相似,矩阵A的特征值为 则行列式 ( )。

解 由A~B,知B的特征值是 。那么 的特征值是2,3,4,5.于是 的特征值是1,2,3,4。

有公式得, 。2.4.4含参数行列式的计算例9 已知 ,求 。

解 将第3行的-1倍加至第1行,有所以 。2.4.5关于 的证明解题思路:①设证法 ;②反证法:如 从A可逆找矛盾;③构造齐次方程组 ,设法证明它有非零解;④设法证矩阵的秩 ;⑤证明0是矩阵A的一个特征值。

2.4.6特殊行列式的解法1 范德蒙行列式定义:行列式 称为n级的范德蒙行列式。例10 计算行列式 之值。

解 把1改写成 ,第一行成为两数之和, 可拆成两个行列式之和,即分别记这两个行列式为 和 ,则由范德蒙行列式得,故 2.4.7 拉普拉斯定理设在行列式D中任意取定了 个行,由这 行元素所组成的一切 级子式与它们的代数余子式的乘积的和等于行列式 。(其中:① 级子式:在一个 级行列式 中任意选定 行 列 。

位于这些行和列的交点上的 个元素按照原来的次序组成一个 级行列式 ,称为行列式 的一个 级子式。②余子式:在 中划去这 行 列后余下的元素按照原来的次序组成的 级行列式 称为 级子式 的余子式。

③代数余子式:设 的 级子式 在 中所在的行、列指标分别是 则 的余子式 前面加上符号 后称为 的代数余子式)。例11 求行列式 。

解:在行列式 中取定第一、二行,得到六个子式:它们对应的代数余子式为根据拉普拉斯定理3 结束语老师渊博的学识、敏锐的思维、民主而严谨的作风,使我受益匪浅,终生难忘,严谨的治学态度和对工作的兢兢业业、一丝不苟的精神将永远激励和鞭策我认真学习、努力工作。感谢我的老师对我的关心、指导和教诲! 感谢我的学友和朋友对我的关心和帮助。

3.matlab求解行列式论文 2000字左右

在Matlab中,用于求行列式值的函数为det(),det为英语中行列式determinant的前三个字母。

例:

>> A = [1 6 0; 7 2 7; 8 3 9]

A =

1

6

0

7

2

7

8

3

9

>> det(A)

ans =

-45

假如说你的矩阵特别大,那么它的行列式子,一般是一个很大的值 在数学上没有什么意义,并且一般误差都是比较大的 matlab求行列式是通过特征值来求解的

>> s=rand(100);t=rand(1000);

>> det(s),det(t)

ans =

1.0873e+025

ans =

Inf

用matlab求带未知量的行列式 如

>> syms x

% x是符号

>> A=[2*x,x-3,3,x;3,4,5*x,2+3*x;4,3,2,1;3,2,3,1]

A =

[

2*x,

x-3,

3,

x]

[

3,

4,

5*x, 2+3*x]

[

4,

3,

2,

1]

[

3,

2,

3,

1]

>> det(A)

ans =

42*x+12*x^2+18

4.有没有关于行列式的性质及应用的自考论文

引言: 问题的提出在实践中存在许多解n元一次方程组的问题,如① ② 运用行列式可以解决如②的n元一次方程组的问题。

2 2.1排列定义1 由1.2……n组成的一个有序数组称为一个 级排列。n级排列的总数为(n的阶乘个)。

定义2 在一个排列中,如果一队数的前后位置与大小顺序相反,即前面的大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。

定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列。 2.2行列式定义(设为n阶):n阶行列式是取自不同行不同列的n个元素的乘积的代数和,它由 项组成,其中带正号与带负号的项各占一半, 表示排列 的逆序数。

2.3 阶行列式具有的性质性质1 行列式与它的转置行列式相等.( ) 事实上,若记 则 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行( )或两列( ),行列式变号. 例如 推论 若行列式 有两行(列)完全相同,则 . 证明: 互换相同的两行, 则有 , 所以 . 性质3 行列式某一行(列)的所有元素都乘以数 ,等于数 乘以此行列式,即推论:(1) 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) 中某一行(列)所有元素为零,则 ;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即.证: 由行列式定义性质6 行列式 的某一行(列)的各元素都乘以同一数 加到另一行(列)的相应元素上,行列式的值不变 ,即计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 2.4行列式的计算2.4.1数字型行列式的计算1. 三角化法例1 .解: 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…, 列都加到第1列上,行列式不变,得.例2 .解: 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算.2. 2.递推法 例3 计算行列式 之值。解 把各列均加至第1列,并按第1列展开,得到递推公式继续使用这个递推公式,有 而初始值 ,所以 例4 计算 .解:., ,,3.数学归纳法当 与 是同型的行列式时,可考虑用数学归纳法求之。

一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。

例5 计算行列式 .解:结合行列式的性质与次行列式本身的规律,可以采用数学归纳法对此行列式进行求解当 时, 假设 时,有 则当 时,把 按第一列展开,得由此,对任意的正整数 ,有4.公式法例6 计算行列式 之值。解 由于 ,故用行列式乘法公式,得因 中, 系数是+1,所以 。

2.4.2行列式的概念与性质的例题例7 已知 是6阶行列式中的一项,试确定 的值及此项所带的符号。解 根据行列式的定义,它是不同行不同列元素乘积的代数和。

因此,行指标 应取自1至6的排列,故 ,同理可知 。直接计算行的逆序数与列的逆序数,有 。

亦知此项应带负号。2.4.3抽象行列式的计算例8 若4阶矩阵A与B相似,矩阵A的特征值为 则行列式 ( )。

解 由A~B,知B的特征值是 。那么 的特征值是2,3,4,5.于是 的特征值是1,2,3,4。

有公式得, 。2.4.4含参数行列式的计算例9 已知 ,求 。

解 将第3行的-1倍加至第1行,有所以 。2.4.5关于 的证明解题思路:①设证法 ;②反证法:如 从A可逆找矛盾;③构造齐次方程组 ,设法证明它有非零解;④设法证矩阵的秩 ;⑤证明0是矩阵A的一个特征值。

2.4.6特殊行列式的解法1 范德蒙行列式定义:行列式 称为n级的范德蒙行列式。例10 计算行列式 之值。

解 把1改写成 ,第一行成为两数之和, 可拆成两个行列式之和,即分别记这两个行列式为 和 ,则由范德蒙行列式得,故 2.4.7 拉普拉斯定理设在行列式D中任意取定了 个行,由这 行元素所组成的一切 级子式与它们的代数余子式的乘积的和等于行列式 。(其中:① 级子式:在一个 级行列式 中任意选定 行 列 。

位于这些行和列的交点上的 个元素按照原来的次序组成一个 级行列式 ,称为行列式 的一个 级子式。②余子式:在 中划去这 行 列后余下的元素按照原来的次序组成的 级行列式 称为 级子式 的余子式。

③代数余子式:设 的 级子式 在 中所在的行、列指标分别是 则 的余子式 前面加上符号 后称为 的代数余子式)。例11 求行列式 。

解:在行列式 中取定第一、二行,得到六个子式:它们对应的代数余子式为根据拉普拉斯定理3 结束语老师渊博的学识、敏锐的思维、民主而严谨的作风,使我受益匪浅,终生难忘,严谨的治学态度和对工作的兢兢业业、一丝不苟的精神将永远激励和鞭策我认真学习、努力工作。感谢我的老师对我的关心、指导和教诲! 感谢我的学友和朋友对我的关心和帮助。

5.求一篇线性代数的论文

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。

线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易.

一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

线性代数的概念很多,重要的有:

代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。

线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:

行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

例如:设A是m*n矩阵,B是n*s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有

r(B)≤n-r(A)即r(A)+r(B)≤n

进而可求矩阵A或B中的一些参数

上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。

三、注重逻辑性与叙述表述

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

6.数学毕业论文,矩阵方面的什么方向题目比较好写点

什么是几何? 数学是研究数量关系和空间形式的一门科学.几何则是侧重研究空间形式. 相传古埃及的尼罗河每年都洪水泛滥,把两岸的土地淹没,人们无法辨认自己的田地,久而久之,人们利用测量与画图来测出土地的周界并计算面积,因而积累了大量的图形知识.后来希腊商人到埃及学会了测量与绘图知识,到公元前338年,希腊人欧几里得对这些知识作了系统的总结和整理,写出了一部关于几何的经典著作——《几何原本》,这就形成了一本完整的几何学.1607年,我国数学家徐光启和意大利传教士利玛窦一起翻译了《几何原本》,同学们学的几何课本就源于这部书. 十八世纪德国著名数学家高斯在19岁时就用圆规和直尺作出了正十七边形.1500年前,我国数学家祖冲之,计算出圆周率在3.1415926与3.1415927之间,他们为几何学的发展作出了杰出的贡献,同学们现在学习的是平面几何,高中要学习立体几何、平面解析几何,大学还要学习微分几何,空间解析几何,黎曼几何等. 二 如何学好几何? 学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”.其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的. 第一 要学好概念.首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映.注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质…… 第二 要学好几何语言.几何语言又分为文字语言和符号语言,几何语言总是和图形相联系.如文字语言:∠1和∠2互为补角,图形见下图,符号语言:∠1+∠2=180°,或∠1=180°-∠2,或∠2=180°-∠1. 第三 要进行直观思维.即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力. 第四 要富于想像.有的问题既要凭借图形,又要进行抽象思维.比如,几何中的“点”没有大小,只有位置.现实生活中的点和实际画出来的点就有大小.所以说,几何中的“点”只存在于大脑思维中.“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中. 第五 要边学习、边总结、边提高.几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结.比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线. 同学们只要认真学习,注意听讲,勤于思考,独立完成作业,是一定能学好几何的.天下无难事,只要肯登攀,胜利将属于你们。

7.席博彦教授关于矩阵方面的论文的基本步骤

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。

这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。

在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。

关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。

成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。

但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。

逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。

其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。

矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。

1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。

英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。

他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。

凯利还提出了凯莱-哈密尔顿定理,并验证了3*3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4*4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的[2] 。

1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。

至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。

庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。

在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

行列式本科毕业论文

转载请注明出处众文网 » 行列式本科毕业论文(毕业论文《行列式的本质及其可完全替代性》怎么写)

资讯

护理毕业设计论文范文大全(护理毕业论文例文)

阅读(90)

本文主要为您介绍护理毕业设计论文范文大全,内容包括护理毕业论文例文,求:护理类毕业论文一篇,护理论文范文。提供一份护理毕业论文,供参考。 长期氧疗的护理 摘要:吸氧是治疗各种肺部疾患合并低吸氧是治疗各种肺部疾患合并低氧血症的基本手

资讯

海南大学本科生毕业论文模版(海南大学论文格式)

阅读(98)

本文主要为您介绍海南大学本科生毕业论文模版,内容包括海南大学论文格式,求毕业论文范文格式模板,毕业论文格式、范文。论文文字和字数除外语专业外,一般用汉语简化文字书写,论文字数本科生不少于0.7万字,专科生不少于0.5万字左右,说明书应为0.

资讯

毕业论文每天一千字(写个毕业论文1000字)

阅读(81)

本文主要为您介绍毕业论文每天一千字,内容包括写个毕业论文1000字,1000~1500字的大学论文格式,写4篇1000字的论文。当沉思成为一种习惯,像光在水中旅行;当孤独彷徨不再出现,像秋晨的红叶一样自然;当梦想越过了现实,心灵远离了徘徊,当追求与执著亲

资讯

论茶馆的语言艺术毕业论文(茶馆的语言艺术分析)

阅读(78)

本文主要为您介绍论茶馆的语言艺术毕业论文,内容包括茶馆的语言艺术分析,茶馆的语言艺术分析,浅谈《茶馆》的艺术特色。平民作家的语言魅力论老舍《茶馆》的语言艺术老舍(18991966)原名舒庆春,字舍予,是中国现代文学史上最杰出的作家之一。他在

资讯

大学毕业论文一般啥题目(怎样选择大学毕业论文题目)

阅读(86)

本文主要为您介绍大学毕业论文一般啥题目,内容包括怎样选择大学毕业论文题目,论文题目的基本要求,毕业论文的题目怎么写。《毕业论文的选题方法》选题的大小一定要适中,难易要适度.(选题的方法。注意两点:一是选题的大小一定要适中,难易要适度

资讯

2020届毕业论文指导情况表(毕业论文指导记录表)

阅读(80)

本文主要为您介绍2020届毕业论文指导情况表,内容包括毕业论文指导记录表,报考2020国考,论文情况那一栏怎么填,论文的指导记录应该怎么写。第 一 次指导主要内容记录老师在授课时于我们分析了论文应该注意的事项,讲述了相关论文的格式和一些

资讯

兰州大学毕业论文查重(毕业论文查重查哪些内容)

阅读(78)

本文主要为您介绍兰州大学毕业论文查重,内容包括兰州大学论文查重系统是什么,兰州大学论文检测比多少合格,毕业论文查重查哪些内容。一般查重,会有通知。每个学校也不一样。比如: 兰州大学生命科学学院论文查重: 论文检测由研究生院学位办公室

资讯

本科毕业论文要求目录吗(论文一定要有目录吗)

阅读(72)

本文主要为您介绍本科毕业论文要求目录吗,内容包括论文一定要有目录吗,毕业论文需要列目录吗,毕业论文需要列目录吗。论文一定要有目录,目录是论文中主要段落的简表。论文由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部

资讯

链式开沟机毕业论文(有关掘进机的毕业论文)

阅读(75)

本文主要为您介绍链式开沟机毕业论文,内容包括有关掘进机的毕业论文,PLC物料运输线控制系统的毕业论文有吗谢谢各位兄弟姐妹了,求一篇机电一体化专业关于液压传动5000字左右的毕业论文。摘要:本文重点介绍上海隧道施工技术研究所对城市交通

资讯

汽车专业理论毕业论文(汽车系毕业论文范文)

阅读(78)

本文主要为您介绍汽车专业理论毕业论文,内容包括汽车系毕业论文范文,汽车专业毕业论文范文,汽车专业毕业论文。毕 业 论 文(设计) 题目:汽车发动机冷却系统维护 所在院系 专业班级 学 号 学生姓名 指导教师 201

资讯

毕业论文答辩老师会看开题报告吗(毕业论文老师会仔细看吗)

阅读(146)

本文主要为您介绍毕业论文答辩老师会看开题报告吗,内容包括本科毕业答辩老师会看前面的综述,开题报告吗,开题答辩会不通过吗,答辩老师会仔细看论文吗。我曾经当过大学老师,既经历过本科、硕士、博士三次答辩,也审阅过本科和硕士的论文。我不

资讯

护理毕业设计论文范文大全(护理毕业论文例文)

阅读(90)

本文主要为您介绍护理毕业设计论文范文大全,内容包括护理毕业论文例文,求:护理类毕业论文一篇,护理论文范文。提供一份护理毕业论文,供参考。 长期氧疗的护理 摘要:吸氧是治疗各种肺部疾患合并低吸氧是治疗各种肺部疾患合并低氧血症的基本手

资讯

海南大学本科生毕业论文模版(海南大学论文格式)

阅读(98)

本文主要为您介绍海南大学本科生毕业论文模版,内容包括海南大学论文格式,求毕业论文范文格式模板,毕业论文格式、范文。论文文字和字数除外语专业外,一般用汉语简化文字书写,论文字数本科生不少于0.7万字,专科生不少于0.5万字左右,说明书应为0.

资讯

毕业论文每天一千字(写个毕业论文1000字)

阅读(81)

本文主要为您介绍毕业论文每天一千字,内容包括写个毕业论文1000字,1000~1500字的大学论文格式,写4篇1000字的论文。当沉思成为一种习惯,像光在水中旅行;当孤独彷徨不再出现,像秋晨的红叶一样自然;当梦想越过了现实,心灵远离了徘徊,当追求与执著亲

资讯

论茶馆的语言艺术毕业论文(茶馆的语言艺术分析)

阅读(78)

本文主要为您介绍论茶馆的语言艺术毕业论文,内容包括茶馆的语言艺术分析,茶馆的语言艺术分析,浅谈《茶馆》的艺术特色。平民作家的语言魅力论老舍《茶馆》的语言艺术老舍(18991966)原名舒庆春,字舍予,是中国现代文学史上最杰出的作家之一。他在

资讯

大学毕业论文一般啥题目(怎样选择大学毕业论文题目)

阅读(86)

本文主要为您介绍大学毕业论文一般啥题目,内容包括怎样选择大学毕业论文题目,论文题目的基本要求,毕业论文的题目怎么写。《毕业论文的选题方法》选题的大小一定要适中,难易要适度.(选题的方法。注意两点:一是选题的大小一定要适中,难易要适度

资讯

毕业论文查查技巧(怎么一次性通过论文查重,有啥技巧)

阅读(91)

本文主要为您介绍毕业论文查查技巧,内容包括怎么一次性通过论文查重,有啥技巧,毕业论文的查重规律是什么,论文查重在哪里查查重技巧分享。掌握5个秘诀,增加论文查重通过率秘诀1:正确的引用 引用的句子如果的确是经典的句子,就用上标的尾注的方