解析几何毕业论文如何选题(数学毕业论文,矩阵方面的什么方向题目比较好写点)

1.数学毕业论文,矩阵方面的什么方向题目比较好写点

什么是几何? 数学是研究数量关系和空间形式的一门科学.几何则是侧重研究空间形式. 相传古埃及的尼罗河每年都洪水泛滥,把两岸的土地淹没,人们无法辨认自己的田地,久而久之,人们利用测量与画图来测出土地的周界并计算面积,因而积累了大量的图形知识.后来希腊商人到埃及学会了测量与绘图知识,到公元前338年,希腊人欧几里得对这些知识作了系统的总结和整理,写出了一部关于几何的经典著作——《几何原本》,这就形成了一本完整的几何学.1607年,我国数学家徐光启和意大利传教士利玛窦一起翻译了《几何原本》,同学们学的几何课本就源于这部书. 十八世纪德国著名数学家高斯在19岁时就用圆规和直尺作出了正十七边形.1500年前,我国数学家祖冲之,计算出圆周率在3.1415926与3.1415927之间,他们为几何学的发展作出了杰出的贡献,同学们现在学习的是平面几何,高中要学习立体几何、平面解析几何,大学还要学习微分几何,空间解析几何,黎曼几何等. 二 如何学好几何? 学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”.其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的. 第一 要学好概念.首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映.注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质…… 第二 要学好几何语言.几何语言又分为文字语言和符号语言,几何语言总是和图形相联系.如文字语言:∠1和∠2互为补角,图形见下图,符号语言:∠1+∠2=180°,或∠1=180°-∠2,或∠2=180°-∠1. 第三 要进行直观思维.即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力. 第四 要富于想像.有的问题既要凭借图形,又要进行抽象思维.比如,几何中的“点”没有大小,只有位置.现实生活中的点和实际画出来的点就有大小.所以说,几何中的“点”只存在于大脑思维中.“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中. 第五 要边学习、边总结、边提高.几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结.比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线. 同学们只要认真学习,注意听讲,勤于思考,独立完成作业,是一定能学好几何的.天下无难事,只要肯登攀,胜利将属于你们。

2.高分求一篇论文 2000字 题目为:初等几何与高等几何的对比研究 资料

高等几何是中学教师进修数学专业(本科)的必修课程。

在学员已经熟悉初等几何、解析几何及高等代数有关知识的基础上,以仿射几何作为欧氏几何到射影几何的桥梁,逐步系统地阐明了射影几何的基本知识,并以变换群的观念加以比较,阐明了它们之间的内在联系。 本课程包括仿射几何、射影几何的基本知识二部分内容,其中以射影几何为主要内容。

本课程兼用代数法与综合法,侧重代数法。 第一章 仿射坐标与仿射变换 一、要求 1.掌握透视仿射对应概念和性质,以及仿射坐标的定义和性质。

熟练掌握单比的定义和坐标表示。 2.掌握仿射变换的两种等价定义;熟练掌握仿射变换的代数表示,以及几种特殊的仿射变换的代数表示。

3.掌握图形的仿射性质和仿射不变量。 二、考试内容 1.单比的定义和求法。

2.仿射变换的代数表示式,以及图形的仿射性质和仿射不变量。 3.仿射变换的不变点和不变直线的求法。

4.几种特殊的仿射变换的代数表示。 第二章 射影平面 一、要求 1.掌握中心射影与无穷远元素的基本概念,理解无穷远元素的引入。

2.熟练掌握笛萨格(Desargues)定理及其逆定理的应用。 3.熟练掌握齐次点坐标的概念及其有关性质。

4.理解线坐标、点方程的概念和有关性质。 5.掌握对偶命题、对偶原则的理论。

6.掌握复元素的概念及性质。 二、考核内容 1.中心投影与无穷远元素 中心投影,无穷远元素,图形的射影性质。

2.笛萨格(Desargues)定理 应用笛萨格(Desargues)定理及其逆定理证明有关结论。 3.齐次点坐标 齐次点坐标的计算及其应用。

4.线坐标 线坐标的计算及其应用。 5.对偶原则 作对偶图形,写对偶命题,对偶原则和代数对偶的应用。

6.复元素 复元素、共轭复元素,过一复点的实直线和在一复直线上的实点。 第三章 射影变换与射影坐标 一、要求 1.熟练掌握共线四点与共点四线的交比与调和比的基本概念、性质和应用。

2.掌握完全四点形与完全四线形的调和性及其应用。 3.掌握一维射影变换的概念、性质,代数表示式和参数表示式。

4.掌握二维射影变换的概念、性质以及代数表示式。 5.理解一维、二维射影坐标的概念以及它们与仿射坐标、笛氏坐标的关系。

二、考试内容 1.交比与调和比 交比的定义、基本性质及其计算方法,调和比的概念及其性质。 2.完全四点形与完全四线形 完全四点形与完全四线形的概念及其调和性。

3.一维基本形的射影对应 一维射影对应的性质,与透视对应的关系,以及代数表示式。 4.一维射影变换 一维射影变换的代数表示式和参数表示式。

5.一维基本形的对合 对合的定义、性质、参数表示,对合的二重元素及其性质。 6.二维射影变换 7.二维射影对应(变换)与非奇线性对应的关系。

8.射影坐标 一维射影坐标、二维射影坐标。 9.一维、二维射影变换的不变元素 求一维射影变换的不变点,二维射影变换的不变点和不变直线。

第四章 变换群与几何学 一、要求 1.了解变换群的概念。 2.理解几何学的群论观点。

3.弄清欧氏几何、仿射几何、射影几何之间的关系及其各自的研究对象。 二、考试内容 1.变换群与几何学的关系。

2.欧氏几何、仿射几何、射影几何学相应的变换群、变换式、研究对象基本不变量和基本不变性。 第五章 二次曲线的射影理论 一、要求 1.掌握二队(级)曲线的射影定义、二阶曲线与直线的相关位置,二阶曲线的切线,二阶曲线与二级曲线的关系。

2.掌握巴斯加定理、布利安桑定理以及巴斯加定理特殊情形。 3.掌握极点,极线的概念和计算方法,熟练掌握配极原则。

4.了解二阶曲线的射影分类。 二、考试内容 1.二阶(级)曲线的概念,性质和互化,求二阶曲线的主程和切线方程。

2.应用巴劳动保护加定理和布利安桑定理及其特殊情形证明有关问题,解决相在的作图问题。 3.求极点坐标和极线方程,求作极点和极线(作图),应用配极原则证明有关问题。

4.二阶曲线的射影分类。 第六章 二次曲线的仿射性质和度量性质 一、要求 1.掌握二次曲线的中心、直径、共轭直径、渐近线等概念和性质。

2.了解二次曲线的仿射分类与射影分类的区别。 3.掌握圆环点、迷向直线概念,掌握拉盖尔定理。

4.掌握二次曲线的主轴、焦点、准线等概念。 二、考试内容 1.求二阶曲线的中心、直径、共轭直径和渐近线。

2.求主轴、焦点和准线。 参考资料:书上的内容。

3.如何写数学与应用数学专业的论文我是一位大一的学生,导员老师为了

虽然我没写过论文,但还是想提点建议,楼主不妨考虑一下。

作为大一学生,限于学识和能力,要写作的所谓“专业论文”,不会要求达到毕业论文那样高的水平,只要对所学过某一方面的知识和方法作一个较为系统的整理就可以了。鉴于此,下面就楼主所提到的四门课程各拟一题,仅供参考: 1.数学分析:极限的求法; 2.高等代数:行列式的计算方法; 3.空间解析几何:仿射变换及其应用; 4.高等几何:高等几何在平面几何证题中的应用。

个人建议:前两个题目比较容易下手,而且收集资料比较方便,可以优先考虑。当然,楼主也可以通过google,搜索“数学系毕业论文题目”,去寻找您觉得更合适的课题。

4.《如何学好小学数学几何》 论文

何谓“几何”?弗赖登塔尔认为,所谓几何就是把握空间,而这个空间对儿童来说,就是他们生活和运动的空间。

因此,“几何”又称为“空间几何”,从严格意义上讲,空间几何主要就是研究事物的空间形式或关系的一门学科。我们首先要弄清楚,作为小学数学课程的空间几何,与作为数学科学的空间几何是有区别的:1、作为数学科学的空间几何(1)是一个完整的知识体系(2)是一种论证几何,或称之为证明几何(3)是存在于严密的公理体系之中的2、作为小学数学课程的空间几何(1)是几何学中最基础的部分(2)是一种直观几何,或称之为经验几何、实验几何(3)是存在于不太严密的局部组织之中的明确了小学数学几何与数学课程几何的不同点之后,就要来研究究竟如何更加有效地进行小学数学的几何学习呢?下面分三个部分:一、小学几何学习的基本分析这部分内容又分三个知识点:(一)、小学数学几何学习的基本内容:也就是我们所说的“空间与图形”,具体内容有:简单几何形体的认识、变换(包括平移、旋转和对称等)、位置、图形测量、简单图形的周长、面积与体积的计算、方向的认识以及平面坐标的初步体验等。

(二)、小学数学几何学习的基本目标:(分两个方面表述)1、从活动的特征表述(1)能从实物的形状想像出几何图形,或由几何图形想像出实物的形状;(2)能从较复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系;(3)能描述出实物或图形的运动和变化;(4)能采用适当的方式描述物体间的位置关系,或能运用图形形象地描述问题,并利用直观来进行思考。2、从内容的特征表述(1)使学生获得有关线、角、简单平面图形和立体图形的知觉映象(空间表象)(2)使学生能建立有关长度、面积或体积等的基本概念(3)能够对不太远的物体间的方位、距离和大小有较正确的估计(4)能从较复杂的图形中辨别有各种特征的图形(三)、小学数学几何学习的基本特点:(两点)1、经验是儿童几何学习的起点儿童的几何学习与成人(或更高年级学生)不同,他们不是以几何的公理体系为起点的,而是以已有的经验为起点的。

儿童在玩各种积木或玩具的过程中,在选择和使用各种生活用具的过程中,在接触到的各种自然现象中,甚至于他们在玩类似“过家家”的游戏中,逐渐感觉到了各种用具在几何方面的特点。2、操作是儿童构建空间表象的主要形式儿童的几何不是论证几何,更多的是属于直观几何,而直观几何就是一种经验几何或实验几何,因此,儿童获得几何知识并形成空间观念,更多的是依靠他们的动手操作。

儿童在这个过程中,是通过不断地尝试搭建、选择分类、组合分解等活动来增加自己的体验,积累自己的经验,丰富自己的想像的。二、儿童形成空间观念的基本特征发展儿童的空间观念是小学数学几何学习的基本价值。

所谓空间观念,就是指物体的形状、大小、位置、距离、方向等形象在人头脑中的映象,是空间知觉经过加工后所形成的表象。下面就结合实例从“思维发展”和“空间观念形成”两大方面具体谈谈“空间观念”。

(一)儿童几何思维水平的发展:1、水平0阶段(前认知阶段) 1)直线和曲线(线能区分)(2)正方形和平行四边形(面不能区分)2、水平1阶段(直观化阶段)(1)四边形和三角形(能从边的数量上去区分)(2)正方形和菱形(不能从角的特征上去区分)(3)长方形和长方体(不能区分面和体)3、水平2阶段(描述/分析阶段)(1)长方形、四边形、三角形(不同分类方法代表不同水平)(2)长方形是特殊的平行四边形(对图形内在性质和特征不能区分)4、水平3阶段(抽象/关联阶段)(1)平行四边形剪拼成长方形(2)三角形拼成平行四边形(能通过动手操作将新知转化为旧知进行学习)(3)长方形与长方体(能区分面和体)(二)儿童空间观念形成与发展的基本特征(三点) 1、儿童空间想像力的发展所谓的空间想像能力,就是指对客观事物的空间形式进行观察、分析、归纳和抽象的能力。低年段儿童在学习空间图形时基本上是从认识“二维图形”开始的,但儿童积累的却是大量的“三维”的几何经验,他们在对“二维”图形的空间思考的过程中,往往就会依附相应的直观物体,比如让学生举例说说生活中有哪些物体的形状是长方形的?学生往往会举到诸如课桌之类的,很难抽象出桌面的形状才是长方形。

甚至到了较高年级学习“圆的认识”时,还会受到直观物体“球”的干扰。2、儿童形成空间观念的主要心理特点(1)对直观的依赖较大“闭合的区域”往往比“开放的区域”更为直观。

如对三角形的性质理解可能会比对角的性质认识更容易;对周长的理解可能会比面积更容易。正如我们听到许多教师上《面积与面积单位》时,总是让学生通过自己的手的触摸来体验“面”的大小,并与周长作出对比,逐步获得对“面积”的理解。

(2)用经验来思考和描述性质或概念无法运用精确语言来描述“圆”,对“圆上”、“圆内”或“圆外”等概念还只能建立在“圆圈上”、“圆的里面”和“圆的外面”等上面。(3)空间观念的形成依靠渐进的过程。

5.求高等代数的课程论文题目

课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。

思想3.《高等代数》中的。

方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法。

6.数学论文

一,关于开设《大学数学》课程的思考 数学教研室 卢介景 [摘要] 二十世纪八十年代初期,我国卫生部开始把高等数学列为医学类各专业的必修课程。

几乎同时,世界开始进入“数学技术”的新时代。去年国家教育部高教司组织了一次重要会议,研讨“数学教育在大学教育中的作用”,建议开设“大学数学”课程。

医学院校面对新的挑战、新的要求,当有新的认识、新的行动。本文综合简介有关“数学技术”和“大学数学”的重要资料,结合我校实际提出一些教改建议。

此文也献给即将到来的“国际数学”年——2000年。 [关键词] 数学技术 大学数学 教学改革 一.“数学技术”的新挑战 1984年1月25日,在美国数学会(AMS)和美国数学协议(MAA)联合年会上,美国总统尼克松的科学顾问David说:“……,对数学研究的低水平的资助,只能出自对数学带来的好处的完全不适当的估价。

显然,很少的人认识到如今被如此称颂的‘高技术’本质上是数学技术。”此后,“‘高技术’本质上是数学技术”的说法在学术界,特别是在数学界广为流传。

例如,在欧洲工业数学联合会的宗旨中,就引述了David的这句话。 1989年8月18日,在中国数学会召开的数学教育与科研座谈会上,钱学森教授指出:“……,这是数学技术,即怎样给出一个方法,能使科学的理论通过电子计算机解答具体的科学技术问题。

”“……,数学的发展关系到整个科学技术的发展,而科学技术是第一生产力;所以数学的发展是一件国家大事。” 五十年前,数学虽然也直接为工程技术提供一些工具,但基本方式是间接的:先促进其他科学的发展,再由这些科学提供工程原理和设计的基础。

“高技术”的出现,把我们的社会推进到了数学工程技术的时代。 数学与工程技术之间,在更广阔的范围内和更深刻的程度上,以新的方式直接地相互作用着,极大地推动了数学和工程科学的发展。

数学从后台走向前台。 数学技术的例子是很多的。

例如,代数与密码技术;Radon与CT(计算机层析)技术;大规模线性规划求解技术在经济、管理中的应用;与保险有关的精算学软件;期货、期权交易中的期权定价软件;信息提取与处理软件;小波技术在信息科学中的应用;穿甲弹的计算仿真技术;并行计算技术在气象和工程中的应用;等等。 创建于1964年的美国工程院,过去是不选数学家为院士的。

但是,在1997年选出的85位院士中,有3位数学家;在1998年选出的84位院士中,又有3位数学家。这从一个方面说明了时代对“数学技术”的认可。

鉴于数学科学在21世纪所具有的关键的重要性,即将到来的公元2000年,被联合国定为“国际数学年”。 在今后两千年内,在人类思想领域里,具有压倒性的新情况,将是数学地理解问题占统治地位。

“数学技术”对我国大学数学教育提出了新的挑战。 二.“大学数学”的新要求 1998年10月,教育部高教司在北京组织了一个重要会议,研讨“数学教育在大学教育中的作用”。

在一些重要问题上,教育部领导、专家与第一线数学教师取得了广泛的共识。 在面临21世纪数学思想和方法对世界经济和技术发展起着越来越重要作用的形势下,必须明确:数学是培养和造就各类高层次专门人才的共同基础。

对非数学类专业的学生,大学数学基础课的作用至少有以下三个方面。 首先,它是学生掌握数学工具的主要课程。

目前的主要问题是,对“工具性”的理解过窄,甚至把数学基础课看成只是为专业课程服务的工具。历史的经验告诫我们,这将导致学生基础薄弱、视野狭窄、后劲不足、创新乏力,十分不利于面向21世纪人才的培养。

其次,它是学生培养理性思维的重要载体。 从本质上讲,数学研究的是各种抽象的“数”和“形”的模式结构,运用的主要是逻辑、思辩和推理等理性思维方法。

这种理性思维的训练,是其他学科难以替代的。这对大学生全面素质的提高、分析能力的加强、创新意识的启迪都是至关重要的。

再次,它是学生接受美感熏陶的一种途径。 数学是美学四大中心建构(史诗、音乐、造形和数学)之一。

数学为之努力的目标:将杂乱整理为有序,使经验升华为规律,寻求各种运动的简洁统一的数学表达等,都是数学美的表现,也是人类对美感的追求。 对大学数学教育改革,要转变教育观念,用正确的教育思想指导改革的实践。

要以数学统一性的观点,从全面素质教育的高度,来设计数学基础课程的体系。把微积分、代数、几何以及随机数学作为大学非数学专业的四门必修基础课程,并把这一序列课程统称为《大学数学》。

根据数学教学自身的特点以及长期实践的经验,对大学数学的课堂教学学时,应保障其基本稳定。 对一般理工和财经管理类专业,学时不应少于300,其中少数对数学要求较低的学校和专业,也不应少于240;对农林类各专业,不应少于200;医科类力争不低于140;文科类争取达到140。

数学教学的安排不能过于集中,最好不少于两个学期。 要充分认识数学教改的艰巨性。

大力加强教学方法改革的研究和实验。努力加强数学教学中的实践环节。

指导思想应求基本一致,具体做法则要因校制宜、百花齐放、突出特色。要办出特色,必须。

7.我女朋友的毕业论文题目是《从线性代数为主线贯穿数学的学习方法

1、论文题目:要求准确、简练、醒目、新颖。

2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)

3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。

4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。

5、论文正文:

(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a.提出-论点;

b.分析问题-论据和论证;

c.解决问题-论证与步骤;

d.结论。

6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。

中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:

(1)所列参考文献应是正式出版物,以便读者考证。

(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

解析几何毕业论文如何选题

转载请注明出处众文网 » 解析几何毕业论文如何选题(数学毕业论文,矩阵方面的什么方向题目比较好写点)

资讯

学校心理健康教育毕业论文(大学生心理健康论文4000字)

阅读(70)

本文主要为您介绍学校心理健康教育毕业论文,内容包括大学生心理健康论文4000字,大学生心理健康论文,大学心理健康论文怎么写急需范文一篇。大学生心理健康论文 [摘要] 随着社会的飞速发展,人们的生活节奏正在日益加快,竞争越来越强烈,人际

资讯

日语版毕业论文(日语专业毕业论文的格式是怎么样的)

阅读(69)

本文主要为您介绍日语版毕业论文,内容包括日语专业毕业论文的格式是怎么样的,日语专业的论文写什么好啊,急求日语论文谢辞。タイトル: XXXXについて论文の构成はじめに1.XXX第1节)XXX第2节)XXX2.XXX第1节)XXX第2节)XXX3.XXX第1

资讯

最新审计专业毕业论文选题(审计专业的选什么论文题目)

阅读(74)

本文主要为您介绍最新审计专业毕业论文选题,内容包括审计专业的选什么论文题目,审计论文怎样选择题目,会计与审计的毕业论文题目。选题应考虑的因素。具体说,选题应考虑以下因素:一是要立足于自己的专业基础和工作经验,尽量写自己熟悉的人或事

资讯

PLC冬枣分拣机毕业论文(plc的毕业论文)

阅读(79)

本文主要为您介绍PLC冬枣分拣机毕业论文,内容包括plc的毕业论文,做基于PLC的邮件分拣机的课题设计怎么做啊,PLC控制的自动售货机毕业论文。PLC的,一百多份,有用的话,加分给我, 1. 基于FX2N-48MRPLC的交通灯控制 2. 西门子PLC控制的四层电梯毕

资讯

关于灯立方的毕业论文(关于灯的小论文)

阅读(73)

本文主要为您介绍关于灯立方的毕业论文,内容包括关于灯的小论文,急需一篇关于光污染的论文,求1篇关于LED灯及未来照明发展的1000字论文。灯如人生,人生如灯,明明灭灭。明亮时,光耀四方,由那灯芯向四周散发着迷人的光晕。于是众人就说:看他多有吸

资讯

大学怎么找指导老师毕业论文(毕业论文怎么找指导老师)

阅读(70)

本文主要为您介绍大学怎么找指导老师毕业论文,内容包括毕业论文怎么找指导老师,毕业论文怎么找指导老师,大学生写毕业论文要找不到指导老师怎么办。自考论文的程序:按照其他科目一样报名,有论文这个科目的,报名费用大约20元左右。2、报好名后,

资讯

博士生毕业论文外审成绩(博士论文外审时间)

阅读(72)

本文主要为您介绍博士生毕业论文外审成绩,内容包括博士论文外审时间,博士论文盲审结论是良好.是不是还是水平差,研究生毕业论文盲审两个专家,一个合格,给七十多分,一个给六十。很多作者在发表论文的时候都很关心论文发表的速度,一般来说论文

资讯

写毕业论文社会意义(写毕业论文的目的与意义)

阅读(73)

本文主要为您介绍写毕业论文社会意义,内容包括写毕业论文的目的与意义,每个大学生毕业都要写论文,论文的意义是什么呢,毕业论文的理论意义和现实意义怎么写。撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。大

资讯

苏州大学医学院硕士毕业论文(研究生论文上传什么网)

阅读(115)

本文主要为您介绍苏州大学医学院硕士毕业论文,内容包括苏州大学硕士学位论文需多少字,苏州大学的硕士论文复制比是多少,研究生论文上传什么网苏州大学如何上传电子论苏州大学如何上传。根据《苏州大学硕士、博士学位授予工作细则》(苏大学位

资讯

学校心理健康教育毕业论文(大学生心理健康论文4000字)

阅读(70)

本文主要为您介绍学校心理健康教育毕业论文,内容包括大学生心理健康论文4000字,大学生心理健康论文,大学心理健康论文怎么写急需范文一篇。大学生心理健康论文 [摘要] 随着社会的飞速发展,人们的生活节奏正在日益加快,竞争越来越强烈,人际

资讯

日语版毕业论文(日语专业毕业论文的格式是怎么样的)

阅读(69)

本文主要为您介绍日语版毕业论文,内容包括日语专业毕业论文的格式是怎么样的,日语专业的论文写什么好啊,急求日语论文谢辞。タイトル: XXXXについて论文の构成はじめに1.XXX第1节)XXX第2节)XXX2.XXX第1节)XXX第2节)XXX3.XXX第1

资讯

最新审计专业毕业论文选题(审计专业的选什么论文题目)

阅读(74)

本文主要为您介绍最新审计专业毕业论文选题,内容包括审计专业的选什么论文题目,审计论文怎样选择题目,会计与审计的毕业论文题目。选题应考虑的因素。具体说,选题应考虑以下因素:一是要立足于自己的专业基础和工作经验,尽量写自己熟悉的人或事

资讯

2020届大学生毕业论文参考(求大学生毕业论文范文)

阅读(82)

本文主要为您介绍2020届大学生毕业论文参考,内容包括求大学生毕业论文范文,大学毕业论文,求大学生毕业论文模板急急。论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的