1.主成分分析和因子分析的异同及应用
第一:两种的函数构成相反,因子分析在于发现潜在的影响因素,是可观测自变量之外潜在的因素,主成分则是自变量的系数聚合;
第二:因子分析给出zhidao的重要结果又两个,第一个是因子的命名,也就是潜在的因素,需要命名。第二个是每个因子所占的权重,附加的可以得到每个变量所占的权重。而主成分分析则主要是综合得分和得分的比较。
第三:如果仅从因子综合得分和主成分得分用于综合评价的话,没什么大地区别,计算出各自得分后进行大小排序,比较,就是结果了。
2.主成分分析和因子分析的区别与联系及其应用
因子分析与主成分分析的异同点:
都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量
公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大
主成分分析仅仅是变量变换,而因子分析需要构造因子模型。
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。
3.主成分分析和因子分析有什么区别
主成分分析和因子分析,不少人初次看到觉得非常相似。特别是spss中并没有专门处理主成分分析的模块,只是在因子分析过程中使用了主成分方法,导致有些人云里雾里,将其混淆。其实二者不管从原理还是在使用上,均有较大差异。
>>>>;原理不同
主成分分析(Principal components analysis,PCA)基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。
因子分析(Factor Analysis,FA)基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)
>>>>;线性表示方向不同
主成分分析中则是把主成分表示成各变量的线性组合;
因子分析是把变量表示成各公因子的线性组合。
>>>>;假设条件不同
主成分分析:不需要有假设(assumptions);
因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。
4.主成分分析与因子分析的异同和spss软件
因子分析
1输入数据。
2点Analyze 下拉菜单,选Data Reduction 下的Factor 。
3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。
4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。
5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。
6单击主对话框中的OK 按钮,输出结果。
5.试述主成分分析,因子分析和对应分析三者之间的区别与联系
一、方式不同:
1、主成分分析:
通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
2、因子分析:
通过从变量群中提取共性因子,因子分析可在许多变量中找出隐藏的具有代表性的因子。
3、对应分析:
通过分析由定性变量构成的交互汇总表来揭示变量。
二、作用体现不同:
1、主成分分析:
主成分分析作为基础的数学分析方法,其实际应用十分广泛,比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用。
2、因子分析:
因子分析在市场调研中有着广泛的应用,主要包括消费者习惯和态度研究、品牌形象和特性研究、服务质量调查、个性测试。
3、对应分析:
能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,是一种直观、简单、方便的多元统计方法。
扩展资料
主成分分析对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。
在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。
6.主成分分析,聚类分析,因子分析的基本思想以及他们各自的优缺点
原发布者:Andrewhao01
主成分分析:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),用综合指标来解释多变量的方差-协方差结构,即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的综合指标即为主成分。求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知)。(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)注意事项:1.由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;2.对于度量单位或是取值范围在同量级的数据,可直接求协方差阵;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;3.主成分分析不要求数据来源于正态分布;4.在选取初始变量进入分析时应该特别注意原始变量是否存在多重共线性的问题(最小特征根接近于零,说明存在多重共线性问题)。优点:首先它利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息。其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价。再次它在应用上侧重于信息贡献影响力综合评价。缺点:当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。命名清晰性低。聚类分析:将
转载请注明出处众文网 » 主成分分析与因子分析毕业论文(主成分分析和因子分析的异同及应用)