1.交流伺服电动机的调速方法 毕业论文
附加阻力,产生磨损微粒(对于无尘室)
对于交流伺服马达
优点:良好的速度控制特性,在整个速度区内可实现平滑控制:控制较复杂;
缺点。交流伺服电动机的工作原理与交流感应电动机相同。在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf接一恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电动机运行的目的。
直流伺服电动机具有良好的线性调节特性及快速的时间响应。
伺服电动机
伺服:一词源于希腊语“奴隶”的意思.
对于直流伺服马达
优点:精确的速度控制,转矩速度特性很硬。电动机转速n为
n=E/K1j=(Ua-IaRa)/K1j式中E为电枢反电动势;K为常数、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。直流伺服电动机的工作原理与一般直流电动机相同,适用于无尘间、易暴环境
惯量低,Ia为电枢电压和电枢电流;Ra为电枢电阻。改变Ua或改变φ,磁通φ恒定,如用在各种自动控制,转子能即时自行停转,90%以上,价格优势
缺点。交流伺服电动机具有运行稳定,不发热;当讯号消失。在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代;高效率,几乎无振荡。人们想把“伺服机构”当个得心应手的驯服工具:电刷换向,速度限制。由于它的“伺服”性能,因此而得名。
伺服电动机
一般分为直流伺服和交流伺服,如随动系统中的位置控制等。
交流伺服电动机的应用
交流伺服电机的输出功率一般为0.1-100 W,电源频率分50Hz、400Hz等多种、可控性好、响应快速;讯号来到之后,转子立即转动,原理简单、使用方便,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法;j为每极磁通;Ua。通常应用于功率稍大的系统中。它的应用很广泛;高速控制;高精确位置控制(取决于何种编码器);额定运行区域内,实现恒力矩;低噪音;没有电刷的磨损,免维护;不产生磨损颗粒、没有火花,服从控制信号的要求而动作。在讯号来到之前,转子静止不动伺服电动机servomotor
用作自动控制装置中执行元件的微特电机。又称执行电动机。其功能是将电信号转换成转轴的角位移或角速度。
伺服电动机分交、直流两类,驱动器参数需要现场调整PID参数整定,需要更多的连线
直流伺服电动机的应用
直流伺服电机的特性较交流伺服电机硬
2.毕业设计:基于单片机的伺服控制系统
你这个题好大,最终要实现伺服系统的话,得费大心思的
首先你肯定做的是直流调速(交流调速想都别想)
你首先需要有功率驱动电路,自己搭H桥或者去买现成的H桥芯片(allegro 3592),自己搭比较费劲
3592芯片已经实现了电流闭环,你要做的就是在单片机内实现速度和位置闭环,你需要一个编码器,然后就是写程序控制调试了,3592外加一个震荡就可以自己实现PWM波,不需要单片机发了,不过3592的电流给定信号是模拟量的,你要解决这个问题。
自己搭H桥的话也很容易,用MOSFET搭,单片机发送PWM波,用硬件做死区,用光耦隔离,用专有的芯片驱动。
3.求一篇工业自动化毕业论文
浅论运动控制新技术在机械工业自动化中的应用 摘要:目前,运动控制新技术已经逐渐发展成熟。
运动控制新技术在机械工业自动化领域中得到推广和应用,必将促进机械工业自 动化的发展。本文从四个方面探讨了运动控制新技术在机械工业自动化中的应用。
关键词:运动控制新技术机械工业 随着现代科学技术的快速发展,高新 技术不断引导传统产业实施变革。机械工 业作为传统产业之一,在这种潮流的影响 下也在逐渐开展一场大规模的机电一体化 技术革命。
随着电子计算机技术、电子电 力技术和传感器技术的发展,各个国家的 机电一体化产品层出不穷。在机电一体化 技术迅速发展的同时,运动控制技术作为 其关键的组成部分,也得到了前所未有的 发展和进步。
本文主要介绍全闭环交流伺 服驱动技术、可编程计算机控制器、直线 电机驱动技术和运动控制卡等几项具有代 表性的新技术。 1全闭环交流伺服驱动技术 交流伺服系统在一些定位精度或动态 相应要求比较高的机电一体化产品中的应 用越来越广,其中数字式交流伺服系统更 符合目前数字化控制模式这一潮流,并且 这一系统使用简单,便于调试。
数字是交 流伺服系统运用先进的数字信号处理器作 为驱动器的主要组成部分,可以对电机轴 后端的光电编码器进行位置采样,从而在 驱动器和电机之间构成位置和速度的闭环 控制系统,并且充分发挥数字信号处理器 的高速运算能力,进而自动完成整个伺服 系统的增益调节,甚至还可以跟踪负载的 变化,实时调节系统增益。 这种数字式交流伺服系统在一般工作 在半闭环的控制方式中,也就是伺服电机上 的编码器既要作为速度环,同时也要作位置 环。
但是这种控制方式存在一个弊端,也就 是不能克服和补偿传动链上的间隙和误差。 为了能够实现更高的控制精度,一般应该在 最终的运动部分安装上高精度的检测元件, 从而实现全闭环控制。
相对比较传统的全 闭环控制方法是伺服系统只是接受速度指 令,完成对速度环的控制,而位置环的控制 是由上位控制器来完成的。这样,就增加了 上位控制器的难度,也在一定程度上阻碍了 伺服系统的推广和应用。
目前,国外的数字式伺服系统发展比 较好,出现了能够很好地实现高精度自动 化设备的运行,这就是全闭环数字式伺服 系统。这一系统能够有效克服上述半闭环 控制系统存在的问题,伺服驱动器可以直 接采用装在最后一级机械运动部件上的位 置反馈元件作为位置环,电机上的编码器 只是作为速度环。
这样一来,伺服系统就 可以消除机械传统上存在的间隙,也可以 补偿机械传动件的制造误差,从而实现真 正的全闭环位置控制功能,得到较高的定 位精度。 2计算机控制器技术 目前,可编程计算机控制器已经成为 新一代可编程控制器。
与传统的可编程控 制器相比,可编程计算机控制器最大的特 点在于它类似于大型计算机得分是多任务 操作系统和多样化的应用软件的设计。传 统的可编程控制器大多采用单任务的时钟 扫面或监控程序来处理程序本身的逻辑运 算指令和外部的I/O通道的状态才与与刷 新。
结果是这样的处理方式直接导致了可 编程控制器的控制速度主要有应用程序的 大小来决定,这与I/O通道中高实时性的 控制要求并不相符。但是,可编程计算机 控制器却能完全解决这个问题,主要表现 在可编程计算机控制器采用了分时多任务 机制打造应用程序的运行平台,这样应用 程序的运行周期与程序的大小没有必然的 联系,而是由操作系统的循环周期来决定 时间的长短。
因此,可编程计算机控制器 能将应用程序的扫描周期同外部的控制周 期分开来,从而满足了实时控制的要求。 随着电子计算机中央处理器技术的发展, 电子计算机处理数据的能力极大地提高, 这就为可变成计算机控制器提供了相应的 硬件技术支持。
可编程计算机控制器在工业控制中已 经显现出了强大的优势功能,体现了可编 程控制器与工业控制计算机及分布式工业 控制系统技术的相互融合。虽然说这一技 术的发展历程并不长,还仍是一项正被探 索的技术,但是其被越来越多地应用到各 个领域中,显示出了强大的生机与潜力。
3直线电机驱动技术 机床进给伺服系统中应用直线电机技 术,近些年来得到了世界范围内机床行业的 重视,特别是在西欧的发达工业地区,已经 出现了“直线电机热”这一高潮。在机床 的进给系统中,运用直线电机直接驱动比原 旋转电机传动的最大优势是取消了从电机 到工作台之间的机械传动环节,进而将机床 进给传动链的长度缩短为零,因此这种传动 方式有被称为“零传动”。
正是因为这种“零 传动”的方式,给机床带来了原旋转电机驱 动方式无法达到的性能和优势。 这些性能和优势主要体现在:快速响 应。
由于伺服系统中直接取消了一些响应 时间较长的机械传动建,使得整个闭环控 制系统的反应速度大大提高,变得快速直 接;高精度。直线驱动系统取消了由丝杠 等机械结构所产生的传动间隙和误差,减 少了插补运动时因传动系统之后所可能带 来的跟踪误差,运用直线定位检测反馈控 制,大大提高了机床的定位精度;高传动 刚度。
由于直接驱动避免了气动、变速和 换向时因为中间传动环节的弹。
4.伺服与运动控制
伺服驱动用来驱动伺服电机,伺服------------(我的理解)就是必须的有反馈信号反馈回来进行控制,比如电机的编码器信号反馈,这就有了三种反馈方式:位置反馈方式、速度反馈方式、转矩控制方式。
而这些反馈方式必须的有设备来实现啊,这就有了伺服驱动器,不同的反馈方式就有伺服驱动器的不同接线方式,这个驱动器的说明书上都有,另外,通过伺服驱动器还可以进行伺服系统的PID调节。
运动需要控制的话就要伺服来实现。欢迎讨论,呵呵。
5.1000字的学习数控的毕业论文
1.引言 数控技术作为未来先进制造技术的核心内容之一,正在朝着开放化,网络化,柔性化和智能化方向发展,数控装备产品的设计制造和应用开发都日益显示出基于开放接口标准的模块形态。
基于模块和组件的系统构建策略更能体现产品设计制造过程中的人性化思想,每一个模块都是一个有针对性应用领域的技术产品形式,是该领域技术原理,应用方案和实现形式的综合体现,是其在数控加工环境下的具体应用,其设计理念和性能指标都体现数控加工技术的要求和市场应用的需求,这些充分体现设计者个性化的产品组件通过开放的标准接口形式有机的结合,组成了功能丰富性能完善的数控装备产品。 数控技术是一个综合性很强的技术学科,涉及系统控制,工业设计,机械结构,变频调速,网络通讯,信号分析等范围很广和适用性很强的技术领域,这些技术原理在工科学校的机电一体化教学中都有涉及,但在应用实践上相对分散,目前只注重在数控操作技能上的能力培养,一系列的计算机辅助设计制造软件也都是针对于这一目标,缺少一个贯穿于整个数控技术领域中的开发应用环境,来从系统规划的高度和应用开发的层面来实施数控技术能力素质培养的目标。
正是针对于这一数控技术培养模式的局限性,本文建立了一个针对于整个数控技术应用开发领域一体化实验平台,采用组件和模块的思想建立了一个集成的设计开发环境,实现从数控装备产品规划,方案选择,运动算法和人机交互等各个环节的教学实践活动,下面将从总体策略,结构特征,关键技术等几个方面给予阐述。 2系统组建策略 2.1数控系统的组成 在这里我们将一般数控系统的概念广义化,定义成由控制器,机械结构,伺服单元等三个主要部分组成的产品模式。
控制器就是我们通常所说的计算机数控系统,它由专用或通用计算机硬件加上系统软件和应用软件组成,完成数控装备的运动控制功能,人机交互功能,数据管理功能和相关的辅助控制功能,是数控装备功能实现和性能保证的核心组成部分,是整个数控体系的中心模块。机械结构是展现控制器运动控制功能的执行机构和机械平台,如数控机床系统中的铣床、车床和加工中心等机械部分;数控机器人系统中机械手和机械臂等。
机械结构根据具体应用场合的不同,具体形态千差万别,但都可以按照运动学和动力学方法简化成运动机构的各种组合形式,这种组合越复杂其对控制器的能力要求就越高,同一种控制器可以完成对不同机械结构的控制,同样一种机械结构可接受不同控制器的控制,这说明机械部分和控制器组合起来可形成形式多样的产品类型。伺服单元是连接控制器和机械结构的控制传输通道,它将控制器数字量的指令输出转换成各种形式的电机运动,带动机械结构上执行元件实现其所规划出来的运动轨迹。
伺服系统包括驱动放大器和电机两个主要部分,其任务实质是实现一系列数模或模数之间的信号转化,表现形式就是位置控制和速度控制。在此基础上,随着开放式数控技术的出现,数控系统体系具备了自我扩展和自我维护的功能,这得益于各种二次开发手段提供了自由完善和自定义系统软硬件功能和性能的能力。
因此,开放数控所特有的二次开发平台也作为一个新的组成部分融入了数控系统体系结构中,并在深刻改变着传统数控系统的结构特征和应用方式。 2.2应用开发系统组成和功能规划 本文所建立的一体化数控系统应用开发平台,完成对上面四个组成环节的统一管理控制,系统规划,设计开发和仿真校验流程,其组成结构如图1所示。
系统组成规划模块完成所需数控装备产品的单元组合,功能规划和性能规划;机械结构设计模块完成对机械执行机构的物理建模,动态性能仿真,实体造型,结构绘图和工艺设计;伺服单元控制模块完成伺服系统的选型,位置控制规划,速度调节规划;运动规划控制模块完成运动轨迹规划,插补算法设计和仿真。
/ /。
转载请注明出处众文网 » 伺服运动控制毕业论文(交流伺服电动机的调速方法毕业论文)