1.电力机车的毕业论文
电力机车司机室噪声控制研究 随着人们对噪声危害认识的不断深入和环保意识的 加强,司乘人员对机车司机室乘坐舒适性也提出了更高 的要求。
如GB/T3450- 2006徽道机车和动车组司机室 噪声限值及测量方%})规定电力机车司机室内噪声限值 78 dB }!},参照LJIC651标准,HXDl型机车技术合同规定 该机车司机室内部噪声限值为75 dB C}。同时,机车司 机室的噪声水平也直接影响到司机的观察能力和反应能 力,与行车安全有着密切的关系。
所以,电力机车司机室 噪声控制研究变得十分迫切。 测点位置 测点距司机室地板上 表而而高度位置/m 分析说明 0315 0.5 入口门40 46 50 走廊门39 4043 38 侧窗3R 42 48 噪声测试及分析 前窗42 41 45 隔声量在敏感频率段较低,山于内面 板穿孔所致,改为无孔板可以大大提 高该部分隔声量 800 Hz对应36 dB,波动剧烈,说明该处 「1的隔声量和密封差,需提高隔声量 800 Hz对应44 dB,波动剧烈,说明该 处窗的隔声量、密封和窗下移动开口 部分漏声,需加强该部分设计 250 Hz对应37 dB. 800 Hz对应38 dB. 波动剧烈,该处窗有共振现象,需设 法避兔此现象发生 木研究以HXD 1型机车为研究对象,分别于2008年3 月和7月对}D 1型机车进行了静态和大秦线正常运营动 态噪声测试,为电力机车司机室噪声控制研究提供了依据。
1.1隔声量测试分析 在静态测试过程中,对HXD 1型机车的入口门、走廊 门、侧窗、前窗进行了隔声量测试,测试结果及分析说明 如表1所示。 1.2噪声源测试分析 1.2.1测点布置 在机车底架靠变压器梁的轮轨处布置两个测点,用 于测试轮轨噪声。
机械间布置一个测点,用于测试机械间 噪声。在司机室按不同高度布置4个测点,用于测试司机 室包括司机座椅、侧窗、入口门、走廊门位置的不同位置 没有明显的变化。
其总声压级大小均为90 dB <},主要 频率范围出现在3155 000 Hz之间,呈明显的宽频带特 性。与图1比较可以发现,机械间内的噪声峰值和轮轨噪 声峰值频率基本一致,说明机械间的噪声有一部分来源 于轮轨噪声,但由于机车底架地板等的隔声作用,传到机 械间的轮轨噪声在传递过程中得到了较大的衰减,因此 可以推断,机械间的噪声主要是机械间里面的设备产生 的。
如图3所示,机车不行驶,压缩机运行,在变频风机以 频率30 Hz运行时,测点频率、声压曲线变化比较平滑;当 变频风机以60 Hz频率运行时,测点声压值160 Hz以下的 低频声压值增加较大。在1 600 Hz频率范围出现尖点,最 大声压值为102 dB (}。
说明变频风机以60 Hz运行时在 1 600 Hz频率范围左右的噪声声压值影响最敏感。 -闷卜-匀速15 knvh 一‘一匀速7U km!h ┌───────────────────┐ │资 │ ├───────────────────┤ │/\ │ ├───────────────────┤ │户犷曰汉,。
\. │ ├───────────────────┤ │ ‘冲声褚一-一卜叫以冻 │ │心峪_尸尸r1'.、‘ │ ├───────────────────┤ │」.。尸今杯、│ ├───────────────────┤ │”/、压缩机运行,变”风机:;OI-Iz运行 │ ├───────────────────┤ │‘月一~压缩机运行,变领风机tif)H:运行 │ └───────────────────┘ 10帕卯豹7060旬。
2.电力机车检修的毕业论文怎么写
矿用电力机车检修工艺探讨 逄永顺, 王庆海 (鹤岗矿务局铁路局运输部车辆厂, 黑龙江鹤岗154100) 摘 要:介绍了EL —1/ 08 型电力机车的检修现状,并就如何保证检修质量问题,提出了工艺改造方案,效果良好。
关键词:电力机车; 检修; 措施 中图分类号:TD52 文献标识码:A 0 前言 为了解决煤矿电力机车在多年检修过程中所存 在的问题,提高检修质量,减少劳动强度,提高劳动 生产率,对EL —1/ 08 型电力机车及矿用电力机车主 轴轴承拆装检修工艺过程进行改造。实践证明实施 以后效果好,解决了多年未解决问题。
1 EL —1/ 08 型电力机车检修现状 (1) EL —1/ 08 型电力机车的送风机,由于其在 原始设计时,所在位置、空间比较狭小,送风机出口 和其上部间隙在20 mm 左右,在其外侧又有防水壁, 并深入到电机车内部800 mm左右,从而造成拆装时 非常困难,费体力、不安全、效率低,必须进行改进。 (2) 轮对主轴轴承的拆装:现今检修单位对轴承 的拆装比较原始,内套一般用氧气及乙炔进行加热, 造成内套受热不均匀,表面易出现斑痕,表面硬度不 一致,膨胀系数不一样,套易裂,给装配造成困难,且 使用效果不好,既减少使用寿命,又增加了成本。
主轴轴承外套为双套,无形中增加了拆装阻力。 在实际工作中一般采用先拆外部的外套再拆里边的 外套,安装时与其相反,采用的方法为冲击方法,强 行拆下或装上,易造成轴承及轴承珠架破损,且受力 不均,不能保证轴承的检修质量。
2 工艺改造方案 (1) 对EL —1/ 08 型电力机车送风机的拆装,从 实际情况出发,按实际尺寸计算,以送风机底座座孔 到车顶部高度为214 m ,底座孔的距离分别为425 mm 及520 mm 并延深车内800 mm 深度的情况,设计 了一种同时适合两种情况的吊具,解决了这一难题。 你好,我有相关论文资料(还有其他几篇的)可供参考,需要的话请加我QQ,我发给你,497267666,谢谢。
3.哪里有有关于电力机车的毕业论文
摘要 SS4B电力机车通信板主要有两个功能:其一是监控两个LCU之间的通信并记录下通信数据;其二是按计算机的指令,将对应数据发送给计算机。
为了完成这个功能设计,本次毕业设计主要应用了W77E58和1480b芯片完成整个设计。 本论文主要阐述了通信板中主控芯片W77E58的应用原理,研究了芯片各个管脚功能特性,其中还对芯片的各个特殊寄存器进行了说明。
为了完成通信板的通信功能,论文还详细说明了W77E58的两个串口。在说明通信板的通信原理过程中,论文还详细介绍了RS485相关的知识,引导出了1480b芯片的介绍和研究,熟悉和了解了1480b芯片的各个管脚的功能和特性,同时阐述了芯片的使用方法和应用原理。
最后,针对整个设计的软件编程过程论文对整个软件设计流程进行了详细的介绍,同时也阐述了利用单片机和汇编语言设计完成通信板通信功能的过程。 本文实现了通信技术的一个应用模型-SS4B电力机车通信板,在此之上,较全面地论述了RS485通信借口标准,充分说明了对于W77E58和1480b芯片的应用过程。
关键词 通信板 RS485 W77E58 1480b 通信 单片机 目录 摘要1 ABSTRACT 1 第一章 绪论 2 1.1 SS4B电力机车简要介绍 2 1.2 SS4B电力机车通信板应用环境 3 1.3 使用RS485接口标准的背景以及相关理论 3 1.3.1 区别RS232和RS485 3 1.4 主控芯片W77E58的基本应用前景 4 第二章 SS4B电力机车通信板开发过程中采用的相关协议 5 2.1电力机车与LCU通信协议描述 5 2.2、RS485接口的设计和实现过程 6 2.2.1 RS485接口的描述 6 2.2.2 RS485接口控制过程 7 2.2.3 RS485通信的基本情况 8 2.3 RS232转换成RS485的过程阐述 8 2.3.1转换电路设计 8 2.4 RS485通信的可靠性设计 11 2.4.1 电路基本原理 11 2.4.2 RS-485的DE控制端设计 11 2.4.3 避免总线冲突的设计 12 2.4.4 RS-485输出电路部分的设计 12 2.5软件编程 13 第三章 通信板设计相关开发平台研究 15 3. 1基于硬件开发平台的介绍 15 3.1.1 基于WINDOWS平台的开发 15 3.1 .2 外部处理器(单片机)的开发 15 3.1 .3 PROTEL 99SE的介绍 15 第四章 通信板硬件设计方案及研究分析 17 4.1研究总体设计思路 17 4.2关于W77E58的研究和分析 17 4.2.1概述 17 4.2.2管脚功能分析以及芯片管脚图 17 4.2.3相关功能分析 21 4.2.5 W77E58的应用原理和使用方法 24 4.3 关于1480b芯片的研究 25 4.3.1 1480b的简要介绍 25 4.3.2 1480b的管脚分布以及管脚功能分析 25 4.3.3 1480b的功能特点 26 4.3.4 MAX1480B芯片的应用范围 27 4.3.5 MAX1480B应用原理和使用方法 27 4.4 根据设计思路,应用各芯片功能设计具体硬件电路图 27 第五章 通信板软件开发过程分析 29 5.1 总体体设计开发思路 29 5.2 对W77E58串口0通信编程的描述 29 5.3 对W77E58串口1通信编程的描述 31 结束语 34 参考文献 35。
4.求助一篇电气工程及其自动化的毕业论文,主要写电气化铁道,字数一
提供参考 电气化铁路是指以电能作为牵引动力的铁路,它用电力机车牵引列车或用电动车辆构成客运列车。
电能由电力系统通过铁路牵引变电所和架设在铁路上空的接触网传送给电力机车或电动车组。世界首条电铁建于19世纪末,百余年来,随着经济发展和技术进步,它以优越的牵引技术性能和显著的经济效益,在国际上普遍得到蓬勃的发展。
至1995年底,世界各国电气化铁路共有22.2万公里,为铁路总营业里程的20%。一些主要国家的电气化铁路概况见表1。
电气化铁路的优越性 电气化铁路是一种现代化的铁路运输工具,和目前使用的内燃、蒸汽机车牵引的铁路相比,具有技术经济上的优越性,主要是:1.能大幅度提高运输能力。由于电力机车以外部电能作动力,它不需要自带动力装置,可降低机车自重,这样,在每根轴的荷重相同的条件下,其轴功率较大,目前国内的电力机车最大为900千瓦,内燃机车为500千瓦,在相同的牵引重量时,其速度较高。
而在相同速度下,其牵引力较大。客运用的SS8型电力机车持续速度为100公里/时,而DFll型内燃机车只有65.5公里/时。
从货运机车的功率来比较,SS4型电力机车为6400千瓦,DFl0型内燃机车为3245千瓦,而前进型蒸汽机车仅为2200千瓦。由上述数字可以看出,因为电力机车的功率大,所以它的牵引力大和持续速度较高,从而大大提高了运输能力。
2.节约能源,降低运输成本。铁路运输是国家能源消耗的一个大户。
因此,牵引动力类型的选择对于合理使用能源具有重要意义。 电力牵引的动力是电能,从我国能源生产的发展来看,“八五”期间发电量增长32%,原煤增长13%,原油增长5.1%;1995年电力牵引用电量仅占全国发电量的0.64%;再以宏观的能源结构看,原油储量远少于煤炭、水力,而一些无法直接使用电能的水上、陆地和空中运输工具及移动机械却需要大量的液体燃料,因此,电力牵引是最合理的牵引动力。
电力牵引每万吨公里的能耗比其它牵引约低1/3,根据1990年全路运输业务决算报告,以每万吨公里机务成本计算,电力机车为100%,则内燃机车为136.9%,蒸汽机车为135.1%。 3.有利于保护环境,并能增加安全可*程度。
电力机车无废气、烟尘,对空气无污染,另外噪音较小,特别在通过长大隧道时,其优点更为显著,这不仅改善了司机的工作条件和旅客的舒适度,而且对铁路沿线城市、郊区的污染也减到最小程度。电力机车装有大功率的电气制动装置,可用于长大下坡的速度调整,从而可以大大提高列车运行的安全度。
电气化铁路建设概况 我国的电气化铁道建设工作始于50年代,经过充分的技术经济论证,1957年决定采用单相交流工频25千伏的牵引供电制式,当时这种制式只在法国刚投入运行,效果明显,可以说我国从一起步就跨入了世界先进制式的行列,起点是高的。我国第一条电气化铁路宝鸡至凤州段91公里在1961年正式开通,至1978年,全国共建成电气化铁路1033公里,改革开放以后,制定了以发展电力牵引为主的技术政策,并积极利用外资,引进了国外先进技术和设备,扩大基建队伍,大大加快了电气化铁路的建设速度及其技术水平的提高,从1978年至1996年共建成9000余公里电气化铁路,使总营业里程突破了一万公里大关,跃居世界第8位,建设概况见表2。
我国铁路的电化率已达18%,电力牵引完成的运量已占全国铁路总运量的25%。 在我国35年的电铁建设历程中,经过了学习前苏联建设经验、结合国情自力更生和消化吸收引进技术等三个阶段,通过广大科技工作者的艰辛奋斗,基本形成了一套兼收各国之长,又有中国特色的技术模式,现在我们已做到建设规范和标准配套、供电方式齐全、设备全部可以自给、建设能力强、检测手段先进,除了高速电铁我国尚处于起步阶段外,目前从建设能力和技术标准来进行综合评价,已接近了国际先进水平。
我国电力机车的生产始于1958年,目前生产的韶山型交直传动电力机车已基本形成系列型谱,轴式齐全,客货兼备。特别是在1994年已生产出最高时速为160公里的SS8型客运电力机车和在1996年研制成功AC4000型交流传动电力机车.表明我国电力机车生产已达到了一个新的水平。
到1995年底,已累计生产2156台。 “九五”电气化铁路建设“九五”期间,国家电气化铁路建设的规模很大,形势十分喜人,新线电气化2000公里,如南(宁)昆(明)线、西安至安康线,朔县至黄骅线等;既有线电气化4300公里,如成(都)昆(明)线、哈(尔滨)大(连)线、京广线的(北)京郑(州)段,武(昌)广(州)段、湘黔线的怀化至水城段和我国第一条准高速(160公里/时)电气化铁路广(州)深(圳)线等。
这些线路的建成将使我国的电气化铁路总里程达到约16000公里,挤身世界四大电铁国家之一。 自60年代以来,为了提高旅客列车的速度,降低成本,以适应市场经济发展的需要,增强铁路在运输市场的竞争力,修建高速铁路已在当今世界展现出强劲的态势,继日本在1964年建成世界上第一条时速为210公里的东海道新干线电铁以后,法、德、意、日、西班牙等国陆续建成了时速为250—300公里的高速电气化。
5.求毕业论文关于SS4改型电力机车跳主断路器的原因分析及改进建议
针对SS4改型电力机车在运行中,辅接地、零压、主回路接地、牵引电机过流等保护系统实现了保护,主断路器跳闸后,而灯显电路因虚接或其它原因造成主副台显示屏均抄无显示袭;而人工强迫闭合主断路器,劈相机启动后,提牵引手柄,机车全车无流,提出电路改进。
关键词:主断路器;故障显示屏;辅接地;零压;主回路接地;牵引电机过流;电子柜;改进 SS4改型电力机车在神朔铁路运用中,多次出现无显示跳主断路器,司机强迫2113闭合主断路器,启动劈相机后,提牵引手柄,全车无流;而主副台故障显示屏均无显示,造成乘务员无法判断故障处所。如0524#机车在担任神木北/神池南间牵引任务,运行途中出现无显示跳主断路器,司机采用上述方5261法,全车无流最后造成机破,回段后经检测为辅接地,排除接地点后正常。
又如0654#机车在运行中无显示频繁的跳主断路器,造成区间运缓,回段经检测为零压变压器故障。以上两例都说明,SS4改型电力4102机车灯显电路连锁虚接或断路时,无法正确显示故障处所,给乘务员应急处理造成不便和误导,须进行电路改进。
故障处所无法正确显示的原因: 在变压器辅助绕组X6与地之间设有辅助电路接地保护电1653路。
6.求毕业论文关于SS4改型电力机车的
SS4改型电力机车轮对失圆故障分析 轮对踏面的最表层因制动、滑行或空转的摩擦而急速加热,接着这种被加热表面的热能很快向踏面内外部传导、扩散使之急速冷却,根据被加热的踏面温度不同,产生了两种形式的热裂纹。
一种是踏面被加热后急速冷却,使表面起到淬火作用,而形成硬化层。另一种是没有发生组织上的变化,踏面表面金属因制动被加热后膨胀,由热胀而产生的压缩应力大部分会因塑性变形而消失。
机车长期在长大、重载、制动电流过大的工作环境下工作使先产生塑性变形的部分产生缺陷,而人的肉眼又无法观察出来,从而产生轮对的失圆。 朔黄铁路运输公司所属十台机车,从2002年底开始,相继出现抱轴箱、齿轮箱、电机承掉杆等多处裂纹,最严重的时候出现走行部圆弹簧裂损、齿轮箱5条安装螺丝全部断裂、电机刷架圈定位块松脱、引起刷架转动引起电机环火、放炮等状况。
最后经过分析,认为是由走行部工作状况恶化、振动剧烈所引起,而引起振动剧烈的唯一原因就是轮对失圆。 下面对轮对失圆产生原因进行简单分析: 1.1 电阻制动电流过大 机车最大制动电流771A,轮周制动功率可达5300KW,轮周制动力可达412KN。
而由于机车长期处于最大制动电流中工作,使轮对与钢轨长期处在最大的接触力上,轮对轨面上极易产生一种不致于引起机车防空转动作的小滑行,而把圆形踏面磨成一块或数块平面的现象。它多数是由于制动力过大等原因造成的导致轮对相对失圆。
发生了失圆的车轮由于不能圆滑地旋转,所以还会进一步引起滑行。 这样,轮对对钢轨产生一种啃食作用,朔黄铁路北大牛上行出站和龙宫下行进站马圈大桥上钢轨已形成鱼鳞壮的片状轨面,对轮对的伤害较大,是产生轮对失圆的主要原因。
1.2 牵引及线路状况 机车牵引5544吨、66辆、长大下坡道(最大12‰)、曲线多、半径小、桥遂相连、线路采用25米轨、接头多、轮对与接头的撞击力以及重载超长列车更加剧轮对的破坏作用。 列车的全部载荷(包括自重和载重),都是经车轮而传递给钢轨的。
列车运行时,车轮在钢轨上不断地滚动,车轮踏面与钢轨形成一对摩擦副。所谓踏面的磨损,是指踏面在工作过程中,沿车轮半径方向尺寸的减小,由于踏面磨损,使踏面的斜度受到破坏,机车在持续长大下坡道上行驶,再加上电阻制动的使用,加剧了机车动轮塌面的磨损程度,造成轮对失圆。
1.3 司机操纵不当 一方面,在长大下坡道(最大12‰)时,部分司机为了省事,责任心不强,在使用机车电阻制动时,对区间线路不熟悉、区间盲目抢点、天气不良时没有及时采取措施、为防止列车运行记录监控装置自停放风而直接将调速手轮由10级提到1级或由1级退回10级,造成机车轮对滑行;另一方面,运行中机车制动电流始终保持在771A的最大制动电流,使轮对相对轨面的接触力过大,轮对工作状况恶化,轮对破坏加剧。部分司机运行中未严格执行《操规》中对制动机的使用规定,造成机车动轮的轻微擦伤,最终导致轮对失圆。
1.4 轮箍本身材质不良 SS4型电力机车轮箍是由轮箍钢轧制而成,轮箍是在加热状态下套上轮辋的,技术要求高,工作不可靠,而且轧刚的工艺水平远比不上整体铸刚的工艺和质量。 1.5 基础制动故障或调整不当 极少数机车在运行中,由于制动杠杆系统发生故障且得不到及时处理,使机车抱闸运行,造成轮对擦伤。
另外,由于基础制动装置杠杆和拉杆等调整不好,造成同一制动梁闸瓦之间制动力不均,制动力大的车轮就可能被擦伤。这些原因最终都会导致轮对失圆。
2 轮对失圆故障的处理方法 轮对失圆故障的处理方法是车削踏面。由于以上几种原因,车轮磨损达到一定尺寸,致使机车走行部工作状况恶化,振动加剧,大量裂纹产生,车轮就不能继续使用,必须进行旋修,以恢复踏面原有几何图形。
而踏面由于一次又一次地旋修,使轮箍厚度不断减薄,直至超过运用限度而报废,对生产造成极大的损失及材料的浪费。 3 SS4型电力机车轮对旋修公里统计报表 朔黄铁路运输公司2003年7月~2004年7月机车旋修公里统计表 序号 事由 机车号 走行公里 1 旋轮 SS4579 65731 2 旋轮 SS4580 76543 3 旋轮 SS4581 87231 4 旋轮 SS4582 77496 5 旋轮 SS4583 69541 6 旋轮 SS4584 88634 7 旋轮 SS4585 73291 8 旋轮 SS4586 90641 9 旋轮 SS4587 80235 10 旋轮 SS4588 70691 4 经济性分析 4.1 一台机车旋修的费用在4000~4500元之间,十台机车旋修一次的费用在40000元左右,一台车一年的走行公里在30万左右,一年内旋修以4次计,这样用在旋修的费用大概在20万左右。
4.2 如果轮对失圆得不到改善,照这样的速度旋修下去,机车的轮箍将维持不到第二个中修就要全部更换新箍,一副新轮箍的费用在3000元左右,一台机车要换8副轮箍需24000元,十台车因更换新箍而产生的费用就是24万元。 4.3 每台机车旋修需要扣车24小时,耽误一趟运量,朔黄铁路一趟车的运费是18000元,一年内每台车旋修以4次计,每台机车因扣车耽误运量造成的经济损失在72000元,十台机车一年内因扣车耽误运量造成的经济损失在72万元。
4.4 另外,还有因轮对失圆。
7.大一电气2000字论文
近年来,随着我国经济的高速发展以及国防实力的显著提高,我国的工业化水平也有了质的飞越。
电气在工业化的今天有着不可替代的作用。电气工程及其自动化专业和人们的日常生活以及工业生产密切相关,发展非常迅速,已经成为高新技术产业的重要组成部分,广泛应用于工业、农业、国防等领域,在国民经济中发挥着越来越重要的作用。
电气给人们的生活带来了很大的便利,人们也由此进入了电气时代。电气工程及其自动化是一门综合性较强的学科,其主要特点是强弱电结合,机电结合,软硬件结合。
电气化作为工业化的基础和重要组成部分,在加快我国现代化建设的进程中起到相当重要的作用,各个行业的发展对电气专业人才的需求也在不断扩大。关键字:电气,自动化 (一)对电气专业的认识 电气工程及其自动化专业属于一级学科,在学科建设方面它包含五个二级学科。
分别是 电机与电器 ;电力系统及其自动化 ;高电压与绝缘技术 ;电力电子与电力传导 ;理论电工与新技术科。电气工程的主要特点是以强电为主、弱电为辅、强弱电结合,电工技术与电子技术相结合、软件与硬件结合、元件与系统结合,具有交叉学科的性质,电力、电子控制、计算机多学科综合,是“宽口径”专业。
本专业培养能够从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发、经济管理以及电子与计算机技术应用等领域工作的宽口径“复合型”高级工程技术人才。该领域对高水 平人才的需求很大。
据估计,随着国外大企业的进入,在这一专业领域将出现很大缺口,那时很可能出现人才供不应求的现象。电气与人们的生活紧密相连,其产品也很容易为人们所接受,正是由于这种种优势,才使得电气工程及其自动化专业被许多人所追捧。
电气工程及其自动化专业对广大考生有很强的吸引力,属于热门专业,主要原因是就业容易,工作环境好,收入高;名称好听,专业内容对学生有吸引力;社会宣传和舆论导向对其有利。该专业方向有着非常好的发展前景,研究成果较容易向现实产品转换,而且效益相当可观。
其创造性的研究思路吸引着众多考生,这里的确是展示他们才能的好地方。 电气工程学科涉及工业、农业、交通运输、国防及人民生活等各领域,与电子科学与技术、计算机科学与技术、控制科学与工程、信息与通信工程、环境科学与工程、生物医学等学科交叉渗透,拓宽了电气工程学科的内涵与外延。
电力工业的发展方向是智能电力系统,或者是坚强智能电网或者是智能电网。智能电力系统是实现电力工业发展价值特征的最有效途径,也是现代电力工业的发展方向,发展智能电力系统能够确保更安全、更经济、更绿色、更和谐,同时智能电力系统是一个广义的坚强智能电网,能够有效地破解未来发展的挑战。
这就为我们当代大学生提出了新要求。努力锻炼自己进行创新,立志成为一位优秀的电气工程人才,为国家的发展做出自己的贡献,为电力行业注入新鲜血液。
(二)本专业前景展望 电气专业进一步细分为五个二级学科,其就业前景都很好。下面分别叙述其未来前景。
(1)电力系统方向 电力系统专业方向是电气工程及其自动化专业中最具有优势和特色的专业方向,为国家级一类特色专业的重要组成部分,主要培养从事高压电气设备设计、制造和运行维护等方面的高级工程技术人才。该专业方向依托电气工程一级博士学位授权学科和博士后科研流动站,覆盖了高电压与绝缘技术和电介质工程2个二级博士、硕士学位授权学科,电力系统,为国家级重点学科。
同时,该专业方向设置高电压绝缘技术和电气绝缘与电缆两个专业模块。目前从国内大的形势来看,该专业就业空间还是有的,但前景不是很景气,因为现在的发电厂自动化设备逐步增加,相对人力岗位将大幅度减少,同时由于原有的在职(有工作经验)职工较多,所以在行业内部会进行大面积的人员分流,致使各个再建或新建电厂对新员工的需求就会减少。
在专科层次,这个专业绝对对口岗位少,也就是专业面相对有点窄,所以我们应该考虑相关专业的迁移问题,即要进一步扩大自己的知识面或调整自己的就业心态,对岗位进行全方位考虑,要树立先就业再择业的观念。像除发电厂类岗位外,还可以考虑关联行业,电气设备的生产、运行、调试、营销以及电力建设施工单位的相关岗位都可以。
(2)高电压与绝缘技术方向 高电压与绝缘技术专业方向为国家级一类特色专业的重要组成部分,主要培养从事高压电气设备设计、制造和运行维护等方面的高级工程技术人才。该专业方向依托电气工程一级博士学位授权学科和博士后科研流动站,覆盖了高电压与绝缘技术和电介质工程2个二级博士、硕士学位授权学科,高电压与绝缘技术,为国家级重点学科。
同时,该专业方向设置高电压绝缘技术和电气绝缘与电缆两个专业模块。 此方向可在电力设备制造行业从事高电压设备的设计、开发、生产和管理等工作,可在高校和科研院所从事教学和科研工作,也可在电力系统从事高压设备的运行维护方面的技术工作和管理工。
总之,就业面还是比较广的,这也为我们提供了更多选择!(3。
8.求一份电气化专业大专毕业论文
电气化铁路中SVC负序补偿应用技术研究 摘要:随着电气化铁路的迅速发展,电铁牵引负荷产生的负序分量及高次谐波,除对牵引供电系统造成危害外,还会造成电力系统负序及谐波污染[1],因而,电铁的负序及谐波危害已成为制约我国电气化铁路发展的重要因素。
结合电气化铁路给电网带来的影响,着重探讨电铁负序补偿中SVC的使用问题。根据国外一些发达国家如日本、澳大利亚等国成功将SVC技术应用在电气化铁路的无功和负序补偿案例以及国内SVC负序补偿应用实例,对SVC负序补偿原理及运行方式进行了研究分析,对SVC在电铁负序治理中的应用前景做了初步探讨,以期提高电力系统运行的经济效益和社会效益。
关键词:电气化铁路;负序补偿;SVC 0 引言 世界上第一条用电力机车作为牵引动力的电气化铁路于1879年在德国柏林建成。中国于1961年建成第一条电气化铁路———宝成铁路的宝鸡至凤州段。
电气化铁路问世后发展很快,法国、日本、德国等国家已形成以电气化铁路为主的铁路运输业,大部分货运量由电气铁路完成。电气化机车上不设原动机,其电力由牵引供电系统提供。
该系统由牵引变电所和接触网构成,来自高压输电线路的高压电经牵引变电所降压整流后,送至铁路架空接触网,电气机车通过滑线弓受电,牵引机车行驶。由于电力机车运营可以使铁路运输成本降低30%~40%,因此越来越成为发展的方向。
电力机车是波动性很大的大功率单相整流负荷,对于三相对称的电力系统供电来说,电铁牵引负荷具有非线形、不对称和波动性的特点,将产生三相不平衡的负序及高次谐波电流注入电网[1],使得旋转电机转子发热、电力变压器使用寿命缩短、输电线路送电能力降低,继电保护装置误动及安全自动装置不能正常投切等诸多影响电网运行的不利因素。因此,必须对电铁机车对电力系统的影响有足够的重视并采取应对措施[2-3]。
目前关于电铁谐波治理的技术已经趋于成熟[4],但对于负序的治理仍存在很多问题,传统上广泛使用的关于减小电铁负序分量的方法大多是合理安排机车及系统机组运行方式,尽量削弱电铁负序分量对电网的影响,此方法虽能在一定程度上控制电铁对电力系统的影响,但仍存在诸如列车运行方式临时变化、电力系统机组检修等问题,影响治理效果。根据电铁负荷给电网带来的负序影响,着重对SVC负序补偿基本原理及运行方式进行了研究分析;将国内外应用SVC治理电铁负序分量的案例做了综述;最后对SVC在电铁负序治理中的应用前景做了初步探讨。
1 电铁负荷负序分量对电网的影响 1.1 负序分量对电网的影响[2] 1.1.1 对旋转电机的影响 1)汽轮发电机转子为敏感部位,因为汽轮发电机转子负序温升比定子大,存在局部高温突出部位,国内曾发生过向电铁供电的汽轮发电机转子部件嵌装面过热受损的事故;另一方面,当负序电流流过发电机时,产生负序旋转磁场、负序同步转矩,使发电机产生附加振动。 2)对邻近牵引变电所而远离电源的异步电动机,其定子绕组为敏感部位。
同时还将在电动机中产生一反向旋转磁场,此反向磁场对电动机转子起制动作用,影响其出力。在谐波和负序电流的共同影响下,国内曾发生多起定子绕组过热烧毁事故。
1.1.2 对电力变压器的影响负序电流造成电力系统三相电流不对称,使得变压器的额定出力不足(即变压器容量利用率下降)。 1.1.3 对输电线路的影响流过电力网的负序电流,只是降低了电力线路的输送能力,并不作功。
1.1.4 对继电保护和自动装置的影响对各种以负序滤波器为启动元件的保护及自动装置干扰:由于保护按负序(基波)量整定,整定值小、灵敏度高。滤波器为启动元件时,实际运行中已引起下列保护和自动装置误动。
1)发电机的负序电流保护误动。2)变电站主变压器的复合电压启动过电流保护装置的负序电压启动元件误动。
3)母线差动保护的负序电压闭锁元件误动。4)自动故障录波装置的负序启动元件的误启动,导致无故障记录而浪费记录胶卷。
在频繁误动时,可能造成未能及时装好新胶卷而导致发生故障时无记录。 1.2 负序分量影响的标准[5] 我国有关同步发电机承受不平衡电流允许值的规定如下:1)在按额定负荷连续运行时,汽轮发电机三相电流之差不超过额定值的10%,水轮发电机和同步调相机三相之差不超过额定值的20%,同时任何一相的电流不得大于额定值。
2)在低电压额定负荷连续运行时,各相电流之差可以大于上面的规定值,但应根据实验确定数值。对于100 MW及以下汽轮发电机,当三相负荷不对称时,若每相电流均不超过额定值,且负序分量与额定电流之比不超过8%,应能连续运行,100 MW以上的发电机,一般认为负序分量与额定电流之比不超过5%。
2 SVC负序补偿基本原理及运行方式[6-8] SVC全称为“静止型动态无功补偿器”,主要用于补偿用户母线上的无功功率,其通过连续调节其自身无功功率来实现的,一般SVC由并联电感和电容两个回路组成,其中感性回路为动态回路,其感性无功功率可连续分相调整,使得整个装置无功功率的大小和性质发生。
9.电气技术毕业论文如何拟题
电气技术可以写系统控制、电力电子方面的。
之前也是不会弄,还是学长给的文方网,写的《桥式起重机起升机构控制改造与应用研究》,非常靠谱先进飞机电气系统汇流条控制器的设计与研制基于模糊理论的数控车床可靠性分配加工中心可信性影响度分析及增长技术研究飞机电源系统配电技术研究大型潮流能发电场的电气系统经济性分析与测试评价海上油气平台电气系统继电保护方案研究吉化化肥厂电气系统成本管理研究混合动力重型汽车电路设计及其可靠性研究基于APROS的发电厂电气仿真系统面向并行工程的数控车床可靠性研究海浪发电实验装置设计与研究高速电梯电气系统的改进核电站电气监控系统组网研究基于多智能体的8G型电力机车故障诊断系统的研制水机电耦合系统建模及其相互影响研究多组舱段质量质心测量设备关键技术研究面向可靠性概率设计的数控机床载荷谱建立方法研究中低速磁浮列车关键电气系统研究基于建设方的商业地产建筑电气设计与管理研究新型收配碴整形车的研制和改进悬臂式掘进机电液控制系统研究与仿真GKD3B型内燃机车电气系统研究配电自动化系统仿真与调试软件研究基于FMEA和重要度分析的数控车床可靠性改进设计炼油化工企业的电气管理应用研究42V汽车用永磁发电机设计与研究株洲南车时代电气城轨关键装备业务发展战略研究连续闪光锚链对焊机电气系统研究与设计碟形飞行器系统设计及其动力学模型和控制方法研究混合动力汽车42V电源系统研究。
10.怎样写电气化铁道毕业论文
电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。
静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。
关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。
但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。
2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。
我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。
单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。
牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。
另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。
两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。
这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。
2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。 三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。
由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。
3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。
20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。
SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。
TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。
α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。
TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。
在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。
由于TSC中的。
转载请注明出处众文网 » 电力机车电器毕业论文(电力机车的毕业论文)