1.人工智能的论文
人工智能(Artificial Intelligence) ,英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
2.生活中的逻辑学论文
人工智能与现今逻辑学的发展-.〔摘要〕 本文认为,计算机科学和人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。
至少在21世纪早期,逻辑学将重点关注下列论题:(1)如何在逻辑中处理常识推理的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的可错的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 〔关键词〕 人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑 现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。
当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。
这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。
由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。 本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。
由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。
实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。
AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理 的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。
例如,AI特别关心下述课题: ·效率和资源有限的推理; ·感知; ·做计划和计划再认; ·关于他人的知识和信念的推理; ·各认知主体之间相互的知识; ·自然语言理解; ·知识表示; ·常识的精确处理; ·对不确定性的处理,容错推理; ·关于时间和因果性的推理; ·解释或说明; ·对归纳概括以及概念的学习。[①] 21世纪的逻辑学也应该关注这些问题,并对之进行研究。
为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。 我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。
1.常识推理中的某些弗协调、非单调和容错性因素 AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。
一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。
于是,常识问题就。
3.由逻辑学所引出的话题都有什么啊
逻辑学论文列表 [逻辑学]推理俱乐部 03-21 [逻辑学]培养学生逻辑思维能力的做法 03-21 [逻辑学]孩子逻辑思维能力差怎么办? 03-21 [逻辑学]再谈普通逻辑学的学习与应试 03-21 [逻辑学]“凡不可说的,应当沉默”——关于维特根斯坦的哲学札 02-13 [逻辑学]莱布尼茨的“可能世界”留下的历史困惑 01-09 [逻辑学]文学场的逻辑:布迪厄的文学观 01-09 [逻辑学]五蕴与十二因缘之关系及其哲学意义 01-09 [逻辑学]《郭店竹简与先秦学术思想》绪论 01-09 [逻辑学]戴震研究专题(一)元气实体:戴震义理之学的逻辑起点 01-09 [逻辑学]戴震研究专题(二)血气心知:戴震义理之学的逻辑展开 01-09 [逻辑学]从人工智能看当代逻辑学的发展 12-20 [逻辑学]计算机不能思维的初步逻辑证明 12-20 [逻辑学]批判思维 12-20 [逻辑学]思维与理论 12-20 [逻辑学]Peirce:科学家与逻辑学家 12-20 [逻辑学]Peirce*逻辑代数中的几个符号及其它 12-20 [逻辑学]论德里达与胡塞尔的符号学之争 12-20 [逻辑学]拒斥形而上学——论分析哲学对形而上学的批判及其局限 12-20 [逻辑学]亚里士多德与黑格尔关于对立统一学说的比较研究 12-20 [逻辑学]“凡不可说的,应当沉默”——关于维特根斯坦的哲学札记 12-20 [逻辑学]戴震研究专题(一)元气实体:戴震义理之学的逻辑起点 12-20 [逻辑学]戴震研究专题(二)血气心知:戴震义理之学的逻辑展开 12-20 [逻辑学]《郭店竹简与先秦学术思想》绪论 12-20 [逻辑学]五蕴与十二因缘之关系及其哲学意义 12-20 [逻辑学]文学场的逻辑:布迪厄的文学观 12-20 [逻辑学]莱布尼茨的“可能世界”留下的历史困惑 例文: 推理俱乐部 请你接触一个逻辑推理问题—— 逻辑推理俱乐部大厅门口贴着一张布告:"欢迎你参加推理俱乐部!只要你愿意,并且通过推理取得一张申请表,就可以获得会员资格了!" 走进大厅,看见桌子上摆着两个匣子:一个圆匣子,一个方匣子。
圆匣子上写着一句话:"申请表不在此匣中",方匣子上写着一句话:"这两句话中只有一句是真话"。 如果你想获得会员的资格,那么你是从圆匣子中,还是从方匣子中去取申请表呢? 答案是从圆匣子中取申请表。
这道题似乎简单,其实推理过程却要经历下列五个步骤: 第一步:设方匣子上写的话 ("这两句话中只有一句是真话")是真的,推出圆匣子上的话 ("申请表不在此匣中")是假的。 第二步:从"申请表不在此匣中"是假的,推出申请表就在圆匣子中。
第三步:设方匣子上的话 ("这两句话中只有一句是真话")是假的,推出圆匣子上的话也是假的。 第四步:同第二步。
第五步:如果方匣子上的话是真的,那么申请表在圆匣子中;如果方匣子上的话是假的,那么申请表也在圆匣子中。或者方匣子上的话是真的,或者方匣子上的话是假的。
总之,申请表在圆匣子中。 或许有些读者略一思考就能得出正确答案,然而,上述的五个步骤是缺一不可的。
这五个步骤涉及到逻辑科学中的假言推理、选言推理、二难推理等诸多推理形式。而这些推理都具有各自的特殊的推理规则。
举这个例子主要是为了说明逻辑推理具有程序性与严密性。它通常是一步一步往下推的,少了一步,思维的链条就衔接不起来;它所走的每一步都必须符合逻辑的规律与规则。
心理学家认为,人的逻辑推理能力是自发产生的。随着年岁的增长,知识面的拓宽,逻辑推理能力也得到同步的发展。
心理学家的意思是:即使你没有学过专门的逻辑科学,你照样能推理,照样可以从给定的前提出发得到正确的结论。这就如同你没有学过生理学,你吃 鱼吃肉也可以消化一样。
然而,要使自己具备高水平的推理能力,就要不懈的努力,通过严格的推理训练了。 这一部份搜集的九种类型的62道推理题,应该说都是世世代代流传的逻辑经典命题。
这些题目取材生动,条件隐蔽,设计精巧,程序严密,极富启迪性。 智力的核心是思维能力。
思维分为聚敛性思维和发散性思维。推理属于聚敛性思维。
开发智力最好是以聚敛性思维作为立足点和出发点。 祝贺你加入推理俱乐部,并希望你成为一个出类拔萃的会员。
4.如何看待人工智能的论文
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:花子婆娘
人工智能(,AI)是20世纪50年代中期兴起的一门新兴边缘科学,它既是计算机科学的一个分支,又是计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性学科。人工智能又称为智能模拟,是用计算机系统模仿人类的感知、思维、推理等思维活动。它研究和应用的领域包括模式识别、自然语言理解与生成、专家系统、自动程序设计、定理证明、联想与思维的机理、数据智能检索等。例如,用计算机模拟人脑的部分功能进行学习、推理、联想和决策;模拟医生给病人诊病的医疗诊断专家系统;机械手与机器人的研究和应用等。人工智能开拓者是罗伯特·维纳。1940年他创立了控制和传递。维纳认为计算机在组织和传递信息方面可能比人类更准确。从理论上讲,计算机在控制周围环境和外界通讯时会比人类更准确人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我
5.求人工智能论文一篇
VeryCD上的电子书 书名:SBIA 2004——人工智能的最新进展Advances in Artificial Intelligence 走近人工智能 人工智能(Artificial Intelligence,AI)一直都处于计算机技术的最前沿,经历了几起几落…… 长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。
不久前,著名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。 在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。
计算机与人工智能 "智能"源于拉丁语LEGERE,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。INTELEGERE是从中进行选择,进而理解、领悟和认识。
正如帕梅拉·麦考达克在《机器思维》(Machines Who Thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。
经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(Turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。
人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(Artificial Intelligence,AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。
我们熟知的IBM的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。 当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且现在的AI具备了更多的现实应用的基础。
90年代以来,人工智能研究又出现了新的高潮。 我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。
问: 目前人工智能研究出现了新的高潮,那么现在有哪些新的研究热点和实际应用呢? 答: AI研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。
目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。 智能接口技术是研究如何使人们能够方便自然地与计算机交流。
为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。
目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。 数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。
主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。
多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。
目前对主体。
6.逻辑学在生活中的应用
也谈充分条件和必要条件的定义 中文摘要】 假言命题是人们在实际生活中应用得比较广泛的一种思维形式,在逻辑学中占有十分重要的地位.由于假言命题是断定事物情况之间的条件关系的命题,因此,对假言命题来说,条件是最重要的,为了准确地把握一个假言命题的逻辑意义,必须首先弄清它所反映的条件的性质.在逻辑教科书中,各种条件的性质主要是通过充分条件、必要条件和充分必要条件的定义来体现的.但是我们要看到,在充分条件和必要条件的定义上,逻辑教科书的作者们是理解不一的,有些人(我们称为甲方)认为: 感兴趣与你全文。
7.人工智能的研究课题
人工智能的研究方向已经被分成几个子领域,研究人员希望一个人工智能系统应该具有某些特定能力,以下将这些能力列出并说明。
早期的人工智能研究人员直接模仿人类进行逐步的推理,就像是玩棋盘游戏或进行逻辑推理时人类的思考模式。到了1980和1990年代,利用概率和经济学上的概念,人工智能研究还发展了非常成功的方法处理不确定或不完整的资讯。
对于困难的问题,有可能需要大量的运算资源,也就是发生了“可能组合爆增”:当问题超过一定的规模时,电脑会需要天文数量级的存储器或是运算时间。寻找更有效的算法是优先的人工智能研究项目。
人类解决问题的模式通常是用最快捷,直观的判断,而不是有意识的,一步一步的推导,早期人工智能研究通常使用逐步推导的方式。人工智能研究已经于这种“次表征性的”解决问题方法取得进展:实体化AGENT研究强调感知运动的重要性。
神经网络研究试图以模拟人类和动物的大脑结构重现这种技能。 AN ONTOLOGY REPRESENTS KNOWLEDGE AS A SET OF CONCEPTS WITHIN A DOMAIN AND THE RELATIONSHIPS BETWEEN THOSE CONCEPTS.主条目:知识表示和常识知识库 主条目:机器学习机械学习的主要目的是为了从使用者和输入数据等处获得知识,从而可以帮助解决更多问题,减少错误,提高解决问题的效率。
对于人工智能来说,机械学习从一开始就很重要。1956年,在最初的达特茅斯夏季会议上,雷蒙德索洛莫诺夫写了一篇关于不监视的概率性机械学习:一个归纳推理的机械。
主条目:机器感知、计算机视觉和语音识别机器感知 是指能够使用传感器所输入的资料(如照相机,麦克风,声纳以及其他的特殊传感器)然后推断世界的状态。计算机视觉能够分析影像输入。
另外还有语音识别 、人脸辨识和物体辨识。 主条目:情感计算KISMET, 一个具有表情等社交能力的机器人情感和社交技能对于一个智能AGENT是很重要的。
首先,通过了解他们的动机和情感状态,代理人能够预测别人的行动(这涉及要素 博弈论、决策理论以及能够塑造人的情感和情绪感知能力检测)。此外,为了良好的人机互动,智慧代理人也需要表现出情绪来。
至少它必须出现礼貌地和人类打交道。至少,它本身应该有正常的情绪。
主条目:计算机创造力一个人工智能的子领域,代表了理论(从哲学和心理学的角度)和实际(通过特定的实现产生的系统的输出是可以考虑的创意,或系统识别和评估创造力)所定义的创造力。 相关领域研究的包括了人工直觉和人工想像。
(1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。
更重要的是,AI反过来有助于人类最终认识自身智能的形成。(2)人工智能对经济的影响。
专家系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。
但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。
(3)人工智能对社会的影响。AI也为人类文化生活提供了新的模式。
现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。 伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。
作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。
8.人工智能的研究课题
人工智能的研究方向已经被分成几个子领域,研究人员希望一个人工智能系统应该具有某些特定能力,以下将这些能力列出并说明。 早期的人工智能研究人员直接模仿人类进行逐步的推理,就像是玩棋盘游戏或进行逻辑推理时人类的思考模式。到了1980和1990年代,利用概率和经济学上的概念,人工智能研究还发展了非常成功的方法处理不确定或不完整的资讯。
对于困难的问题,有可能需要大量的运算资源,也就是发生了“可能组合爆增”:当问题超过一定的规模时,电脑会需要天文数量级的存储器或是运算时间。寻找更有效的算法是优先的人工智能研究项目。
人类解决问题的模式通常是用最快捷,直观的判断,而不是有意识的,一步一步的推导,早期人工智能研究通常使用逐步推导的方式。人工智能研究已经于这种“次表征性的”解决问题方法取得进展:实体化AGENT研究强调感知运动的重要性。神经网络研究试图以模拟人类和动物的大脑结构重现这种技能。 AN ONTOLOGY REPRESENTS KNOWLEDGE AS A SET OF CONCEPTS WITHIN A DOMAIN AND THE RELATIONSHIPS BETWEEN THOSE CONCEPTS.
主条目:知识表示和常识知识库 主条目:机器学习
机械学习的主要目的是为了从使用者和输入数据等处获得知识,从而可以帮助解决更多问题,减少错误,提高解决问题的效率。对于人工智能来说,机械学习从一开始就很重要。1956年,在最初的达特茅斯夏季会议上,雷蒙德索洛莫诺夫写了一篇关于不监视的概率性机械学习:一个归纳推理的机械。 主条目:机器感知、计算机视觉和语音识别
机器感知 是指能够使用传感器所输入的资料(如照相机,麦克风,声纳以及其他的特殊传感器)然后推断世界的状态。计算机视觉能够分析影像输入。另外还有语音识别 、人脸辨识和物体辨识。 主条目:情感计算
KISMET, 一个具有表情等社交能力的机器人
情感和社交技能对于一个智能AGENT是很重要的。 首先,通过了解他们的动机和情感状态,代理人能够预测别人的行动(这涉及要素 博弈论、决策理论以及能够塑造人的情感和情绪感知能力检测)。此外,为了良好的人机互动,智慧代理人也需要表现出情绪来。至少它必须出现礼貌地和人类打交道。至少,它本身应该有正常的情绪。 主条目:计算机创造力
一个人工智能的子领域,代表了理论(从哲学和心理学的角度)和实际(通过特定的实现产生的系统的输出是可以考虑的创意,或系统识别和评估创造力)所定义的创造力。 相关领域研究的包括了人工直觉和人工想像。 (1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。更重要的是,AI反过来有助于人类最终认识自身智能的形成。
(2)人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。
(3)人工智能对社会的影响。AI也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。 伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。
9.求一篇关于人工智能与机器人的论文
机器人和人工智能的区别(2008-07-29 19:00:35)标签:杂谈
我们研究的是人工智能,和机器人有密切关系,但不是为了研究那些现实的机器人。
我们不会去研究机器人足球赛、跳舞机器人这些东西,机器人有很多种:工业机器人能够不断重复作一些设定好的精确动作,提高效率,减少失误;军用机器人能够捕捉移动目标并开枪射击,它需要具有简单的图像识别能力;无人飞机也是一种机器人,需要遥感和一些图像识别能力。这些都是已经投入使用了的机器人,但它们显然没有人的智力,只是自动控制技术的延展。
人工智能是“类人”机器人所需要的算法和技术,也就是说我们研究的主题是高级智能的本质,而不是其外在表现和辅助部件。
人工智能要解决的问题主要是以下几个方面:
一、识别过程,外界输入的信息向概念逻辑信息转译,将动态静态图像、声音、语音、文字、触觉、味觉等信息转化为形式化(大脑中的信息存储形式)的概念逻辑信息。
二、智能运算过程,输入信息刺激自我学习、信息检索、逻辑判断、决策,并产生相应反应。
三、控制过程,将需要输出的反应转译为肢体运动和媒介信息。
实用机器人在第三个方面做得比较多,而识别和智能运算是很弱的,尤其是概念知识的存储形式、逻辑判断和决策这些方面更是鲜有成果,这正是人工智能要重点解决的问题。
【人工和智能】
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
转载请注明出处众文网 » 逻辑学与人工智能毕业论文选题(人工智能的论文)