1.急求:不等式的证明方法的文献综述
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
练习:
1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)
3.判断下列命题的真假,并说明理由.
(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)
(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)
若a>b,c>d,则a-d>b-c.(真).
2.急求:不等式的证明方法的文献综述
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
练习:
1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)
3.判断下列命题的真假,并说明理由.
(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)
(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)
若a>b,c>d,则a-d>b-c.(真).
3.不等式的证明
不等式的证明的方法有很多种,以下就由我们写论文网 / 为您总结几种。
1.比较法 作差作商后的式子变形,判断正负或与1比较大小 作差比较法-----要证明a>b,只要证明a-b>0. 作商比较法---已知a,b都是正数,要证明a>b,只要证明a/b>1 例1求证:x2+3>3x 证明:∵(x2+3)-3x=x2-3x+()2-()2+3 =+≥>0 ∴x2+3>3x 例2已知a,bR+,并且a≠b,求证 a5+b5>a3b2+a2b3 证明:(a5+b5)-(a3b2+a2b3)=(a5-a3b2)-(a2b3-b5) =a3(a2-b2)-b3(a2-b2)=(a2-b2)(a3-b3) =(a+b)(a-b)2(a2+ab+b2) ∵a,bR+ ∴a+b>0,a2+ab+b2>0 又因为a≠b,所以(a-b)2>0 ∴(a+b)(a-b)2(a2+ab+b2)>0 即(a5+b5)-(a3b2+a2b3)>0 ∴a5+b5>a3b2+a2b3 例3已知a,bR+,求证:aabb≥abba 证明:= ∵a,bR+,当a>b时,>1,a-b>0,>1; 当a≤b时,≤1,a-b≤0,≥1. ∴≥1,即aabb≥abba 综合法 了解算术平均数和几何平均数的概念,能用平均不等式证明其它一些不等式 定理1如果a,bR,那么a2+b2≥2ab(当且仅当a=b时取"="号) 证明:a2+b2-2ab=(a-b)2≥0 当且仅当a=b时取等号.所以 a2+b2≥2ab(当且仅当a=b时取等号). 定理2如果a,b,cR+,那么a3+b3+c3≥3abc(当且仅当a=b=c时取"="号) 证明:∵a3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b+c)(a2+b2+c2-ab-bc-ac) =(a+b+c)[(a-b)2+(b-c)2+(a-c)2]≥0 ∴a3+b3+c3≥3abc, 很明显,当且仅当a=b=c时取等号. 例1已知a,b,c是不全等的正数,求证 a(a2+b2)+b(a2+c2)+c(a2+b2)>6abc. 放缩法 这也是分析法的一种特殊情况,它的根据是不等式的传递性— a≤b,b≤c,则a≤c,只要证明"大于或等于a的"b≤c就行了. 例,证明当k是大于1的整数时,, 我们可以用放缩法的一支——"逐步放大法",证明如下: 分析法 从要证明的不等式出发,寻找使这个不等式成立的某一"充分的"条件,为此逐步往前追溯(执果索因),一直追溯到已知条件或一些真命题为止.例如要证a2+b2≥2ab我们通过分析知道,使a2+b2≥2ab成立的某一"充分的"条件是a2-2ab+b2≥0,即(a-b)2≥0就行了.由于是真命题,所以a2+b2≥2ab成立.分析法的证明过程表现为一连串的"要证……,只要证……",最后推至已知条件或真命题 例求证: 证明: 构造图形证明不等式 例:已知a,b,c都是正数,求证: +> 分析与证明:观察原不等式中含有a2+ab+b2即a2+b2+ab的形式,联想到余弦定理:c2=a2+b2-2abCosC,为了得到a2+b2+ab的形式,只要C=120°, 这样:可以看成a,b为邻边,夹角为120°的的三角形的第三边 可以看成b,c为邻边,夹角为120°的的三角形的第三边 可以看成a,c为邻边,夹角为120°的的三角形的第三边 构造图形如下, AB=, BC=, AC= 显然AB+BC>AC,故原不等式成立. 数形结合法 数形结合是指通过数与形之间的对应转化来解决问题.数量关系如果借助于图形性质,可以使许多抽象概念和关系直观而形象,有利于解题途径的探求,这通常为以形助数;而有些涉及图形的问题如能转化为数量关系的研究,又可获得简捷而一般化的解法,即所谓的以数解形.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形的转化,可以培养思维的灵活性,形象性.通过数形结合,可以使复杂问题简单化,抽象问题具体化. 例.证明,当x>5时,≤x-2 解:令y1=,y2=x-2,从而原不等式的解集就是使函数y1>y2的x的取值范围.在同一坐标系中分别作出两个函数的图象.设它们交点的横坐标是x0,则=x0-2>0.解之,得x0=5或x0=1(舍).根据图形,很显然成立. 反证法 先假定要证不等式的反面成立,然后推出与已知条件(或已知真命题)和矛盾的结论,从而断定反证假定错误,因而要证不等式成立. 穷举法 对要证不等式按已知条件分成各种情况,加以证明(防止重复或遗漏某一可能情况). 注意:在证明不等式时,应灵活运用上述方法,并可通过运用多种方法来提高自己的思维能力.。
4.证明不等式的方法总结
不等式证明方法的归纳小结
教学目的:分类地归纳小结不等式的证明方法
教学重点:通过不等式的证明,提高推理证明能力
教学难点:根据不等式的特征恰当地使用不等式的证明方法
教学过程:
(一)不等式的内容
1.不等式的性质;2.不等式的证明;3.不等式的解法
(二)证明不等式是解不等式的理论基础——不等式的性质(基本 )
(三)证明不等式常用的基本方法
1.比较法
(1)作差法
a>b a-b>0
理论根据 a=b a-b=0
a<b a-b<0
一般步骤:作差——变形——判断符号
常常用之证明较高的不等式或分式不等式
例:已知:a,b∈R+,且a≠b
求证:a5+b5>a3b2+a2b3
(2)作商法
2.综合法——“由因导果”(实质)
理论根据 a2≥0即a2∈{0}∪R+
此种方法常用到的重要不等式
a2+b2≥2ab (a,b∈R)
(a,b∈R+)
a3+b3+c3≥3abc (a,b,c∈R+)
(a,b,c∈R+)
例如:证明:a2+b2+c2+d2≥ab+bc+cd+da
要根据不等式的特征,运用重要不等式,注意条件是否具备
3.分析法——“执果索因”(实质)
思想方法解题格式
为了证明……
只需证明……
……
因为……成立
所以……也成立
例如:证明: (a≥3)
分析法在思考上优于综合法易于寻找证明的思路,综合法在证明过程中书写表达条理,故常将两法综合使用,进行记忆较好。
4.反证法
思想方法:为了证明A>B成立,假设AB成立。
5.放缩法
理论根据 a>b且b>c a>c
例:已知a,b,c,d为正数,
求证:1< <2
证明:由a,b,c,d为正数,则有
>=1
∴原不等式成立
练习:证明: (n∈N*且n≥2)
证明:由k∈N*且2≤k≤n,则有
∴
=
6.数学归纳法
证明一些与自然数有关的不等式。
作业:解答课堂例练习题
望采纳
转载请注明出处众文网 » 不等式证明的若干方法毕业论文(急求:不等式的证明方法的文献综述)