1.求一篇线性代数的论文
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。
由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。
线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m*n矩阵,B是n*s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。
大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
2.应用数学毕业论文
随机环境中经济增长模型研究
广义生产函数假设下的经济增长模型分析
考虑市场预期的供求关系模型
基于Matlab的离散事件模拟
用风险预算进行资产配置
有向图上的PAR贯序模拟系统
单圈图的一般Randic指标的极值问题
模糊数学在公平评奖问题中的应用
模糊矩阵在环境评估中的初步应用
模糊评判在电脑中的初步应用
数学家的数学思想
Riemann积分定义的网收敛表述
微积分思想在不等式证明中的应用
用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义
微积分思想在几何问题中的应用
齐次平衡法求KdV-Burgers方程的Backlund变换
Painleve分析法判定MKdV-Burgers方程的可积性
直接法求KdV-Burgers方程的对称及精确解
行波求解KdV-Burgers方程
因子有向图的矩阵刻划
简单图上的lit-only sigma-game
半正则图及其线图的特征多项式与谱
分数有向图的代数表示
WWW网络的拓扑分析
作者合作网络等的拓扑分析
古诺模型
价格歧视
用数学软件做计算微分方程的计算器
用数学软件做矩阵计算的计算器
弹簧-质点系统的反问题
用线性代数理论做隐含语义搜索
对矩阵若当标准型理论中变换阵求法的探讨
对矩阵分解理论的探讨
对矩阵不等式理论的探讨(1)
对矩阵不等式理论的探讨(2)
函数连续性概念及其在现代数学理论中的延伸
从有限维空间到无限维空间
Banach空间中脉冲泛函微分方程解的存在性
高阶脉冲微分方程的振动性
具有积分边界条件的分数阶微分方程解的存在唯一性
分数阶微分方程的正则摄动
一个形态形成模型的摄动解
一个免疫系统常微分方程模型的渐近解
前列腺肿瘤连续性激素抑制治疗的数学模型
前列腺肿瘤间歇性激素抑制治疗的数学模型
病毒动力学数学模型
肿瘤浸润数学模型
耗散热方程初边值问题解的正则性
耗散波方程初边值问题解的正则性
耗散Schrodinger方程初边值问题解的正则性
非线性发展方程解得稳定性
消费需求的鲁棒调节
生产函数的计量分析
企业的成本形态分析的研究
分数阶Logistic方程的数值计算
分数阶捕食与被捕食模型的数值计算
AIDS传播模型的全局性分析
HIV感染模型的全局性分析
风险度量方法的比较及其应用
具有区间值损益的未定权益定价分析
模糊规划及其在金融分析中的应用
长依赖型金融市场
股票价格与长相依性
分数布朗运动下的外汇期权定价
不确定性与资产定价
加油站点的分布与出租车行业的关系
3.求一篇线性代数的论文
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。
由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。
线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m*n矩阵,B是n*s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。
大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
4.关于代数式的应用的数学论文,急求,帮帮忙
你的数学论文代数式应用论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。
毕业论文怎么写?毕业设计和毕业论文是本科生培养方案中的重要环节。学生通过毕业论文,综合性地运用几年内所学知识去分析、解决一个问题,在作毕业论文的过程中,所学知识得到疏理和运用,它既是一次检阅,又是一次锻炼。
不少学生在作完毕业设计后,感到自己的实践动手、动笔能力得到锻炼,增强了即将跨入社会去竞争,去创造的自信心。这里仅将我们教研室老师近年指导本科毕业生论文中的体会整理出来,希望能对学生毕业论文有所帮助。
选择一个相关的题目,应该是你感兴趣并且和你所学的专业相关的。进行文献检索,查找有关这个主题的所有研究成果,并且进行深入的研究。
在广泛的吸收别人的成果的同时,思考自己在这个问题上的观点和看法,这是你能做的最重要的一步。参考科技论文的写作规范,先写出大纲,再增加内容形成草稿,反复修改,最后定稿。
需要注意地问题:标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。
毕业论文的标题一般分为总标题、副标题、分标题几种。一般说来,篇幅较长的毕业论文,都没有分标题。
设置分标题的论文,因其内容的层次较多,整个理论体系较庞大、复杂,故通常设目录。参考文献又叫参考书目,它是指作者在撰写毕业论文过程中所查阅参考过的著作和报刊杂志,它应列在毕业论文的末尾。
列出参考文献有三个好处:一是当作者本人发现引文有差错时,便于查找校正。二是可以使毕业论文答辩委员会的教师了解学生阅读资料的广度,作为审查毕业论文的一种参考依据。
三是便于研究同类问题的读者查阅相关的观点和材料。
5.高等代数论文应该怎样写
数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。
1 撰写数学论文应具有原则
1.1 创新性
作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。
1.2 科学性
科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。
1.3 规范性
规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。
2 撰写数学论文忌讳
2.1 大题小作
论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。
2.2 关门写稿
一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。
2.3 形式思维混乱
科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。
3 关于数学论文选题
数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:
(1)需要性 选题应从社会需要和科学发展的需要出发。
(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。
(3)科学性 选题应有最基本的科学事实作依据。
(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。
4 关于数学论文文风
4.1 语言表达确切
从选词,造句,段落,篇章,标点符号都应正确无误。
4.2 语言表达清晰简洁
语句通顺,脉络清楚,行文流畅,语言简洁。
4.3 语言朴实
语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。
6.我女朋友的毕业论文题目是《从线性代数为主线贯穿数学的学习方法
1、论文题目:要求准确、简练、醒目、新颖。
2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)
3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
5、论文正文:
(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出-论点;
b.分析问题-论据和论证;
c.解决问题-论证与步骤;
d.结论。
6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:
(1)所列参考文献应是正式出版物,以便读者考证。
(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
7.计算数学专业毕业后做什么
业务培养目标:本专业培养具有良好的数学知识,掌握信息科学和计算科学的基本理论和方法,受到科学研究的初步训练,能运用所学知识和熟练的计算机技能解决实际问题,能在科技、教育和经济部门从事研究、教学和应用开发和管理工作的高级专门人才。
业务培养要求:本专业学生主要学习信息科学和计算科学的基本理论、基本知识和基本方法,打好数学基础,受到较扎实的计算机训练,初步具备在信息科学与计算科学领域从事科学研究、解决实际问题及设计开发有关软件的能力。
毕业生应获得以下几方面的知识和能力:
1.具有扎实的数学基础,掌握信息科学和计算科学的基本理论和基本知识;
2.能熟练使用计算机(包括常用语言、工具及一些专用软件),具有基本的算法分析、设计能力和较强的编程能力;
3.了解某个应用领域,能运用所学的理论、方法和技能解决某些科研或生产中的实际课题;
4.对信息科学与计算科学理论、技术及应用的新发展有所了解;
5.掌握文献检索、资料查询的基本方法,具有一定的科学研究和软件开发能力。
主干学科:数学、计算机科学与技术。
主要课程:数学基础课(分析、代数、几何)、概率统计、数学模型、物理学、计算机基础(计算概论、算法与数据结构、软件系统基础)、信息科学基础、理论计算机科学基础、数值计算方法、计算机图形学、运筹与优化等。
主要实践性教学环节:包括生产实习,科研训练,毕业论文(毕业设计)等,一般安排10--20周。
修业年限:四年
授予学位:理学学士
我现在所学的就是这个专业,不好评价。。。。
追问你们这个计算数学专业的硕士研究生怎么样呢,我今年就要去读了啊
回答其实我没什么概念的,但我觉得,硕士什么的不重要,关键还是就业。这个专业有的优点是涉及数学与计算机,以后可以往两方面发展,自己日后还有选择性;但也有不足,就是两者都涉及的不深,不能有很好的实用性。说实话,我觉得优点还是大于不足的。。。。。。。。。
8.数学本科毕业论文
数学本科毕业论文--数学教学与学生创造思维能力的培养 摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性 思维的实质就是求新、求异、求变。
在数学教学中培养学生的创造思维、激 发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力: 1、指导观察2、引导想象3、鼓励求异4、诱发灵感 关键词:创造 思维 前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发 展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题, 本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法 现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维 的实质就是求新、求异、求变。
创新是教与学的灵魂,是实施素质教育的核心;数学 教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积 极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。
本文就创造思维及数学教学中如何培养学 生创造思维能力谈谈自己的一些看法。 一、创造思维及其特征 思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。
创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式, 使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般 是指对思维主体来说是新颖独到的一种思维活动。
它包括发现新事物、提示新规律、建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果 通常并不是首次发现或超越常规的思考。 创造思维是创造力的核心。
它具有独特性、新颖性、求异性、批判性等思维特征, 思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是 正常人经过培养可以具备的。 二、创设适宜的教学环境 教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛, 只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创 造性思维能力的重要前提。
1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造 因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。
例如教学轴对称图形时,提出 “在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位 置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。
要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。 三、怎样培养学生的创造思维能力 1、指导观察 观察是信息输入的通道,是思维探索的大门。
敏锐的观察力是创造思维的起步器。 可以说,没有观察就没有发现,更不能有创造。
儿童的观察能力是在学习过程中实现 的,在课堂中,怎样培养学生的观察力呢? 首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要 在观察中及时指导。
比如要指导学生根据观察的对象有顺序地进行观察,要指导学生 选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科 学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。
第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。
教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。
借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。
2、引导想象 想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的, 而想象可以包罗整个宇宙。
"在教学中,引导学生进行数学想象,往往能缩短解决问 题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。
数学想象一 般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎 实的基础知识和丰富的经验的支持。
第二,是要有能迅速摆脱表象干扰的敏锐的洞察 力和丰富的想象力。第三,要有执着追求的情感。
因此,培养学生的想象力,首先要 使学生学好。
转载请注明出处众文网 » 数值代数毕业论文(求一篇线性代数的论文)