1.写雷达的论文怎么写
利用微波波段电磁波探测目标的电子设备。
雷达是英文radar的音译,意为无线电检测和测距。雷达概念形成于20世纪初,在第二次世界大战前后获得飞速发展。
雷达的工作原理,是设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。雷达分为连续波雷达和脉冲雷达两大类。
脉冲雷达因容易实现精确测距,且接收回波是在发射脉冲休止期内,所以接收天线和发射天线可用同一副天线,因而在雷达发展中居主要地位。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。
目标方位是利用天线的尖锐方位波束测量。仰角靠窄的仰角波束测量。
根据仰角和距离就能计算出目标高度。当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。
从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。
雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。
星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。其空间分辨力可达几米到几十米,且与距离无关。
雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。
2.写雷达的论文怎么写
利用微波波段电磁波探测目标的电子设备。
雷达是英文radar的音译,意为无线电检测和测距。雷达概念形成于20世纪初,在第二次世界大战前后获得飞速发展。
雷达的工作原理,是设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。雷达分为连续波雷达和脉冲雷达两大类。
脉冲雷达因容易实现精确测距,且接收回波是在发射脉冲休止期内,所以接收天线和发射天线可用同一副天线,因而在雷达发展中居主要地位。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。
目标方位是利用天线的尖锐方位波束测量。仰角靠窄的仰角波束测量。
根据仰角和距离就能计算出目标高度。当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。
从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。
雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。
星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。其空间分辨力可达几米到几十米,且与距离无关。
雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。
3.请提供一篇有关雷达的论文,3000~6000字左右,不需要写出摘要及
地质雷达在水利工程质量检测中的应用1 前言 地质雷达作为近十余年来发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图象显示等优点,备受广大工程技术人员的青睐。
现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在工程探测领域发挥着愈来愈重要的作用。而地质雷达技术用于堤防隐患的探测尚属初步阶段,通过广大物探技术人员的共同努力,达到了解和掌握不同隐患类型在雷达图像上的反映特征,在不断总结探测经验的基础上,提高异常的判断能力和精度,较确切地推定堤防工程隐患的性质和位置,以便指导有关管理单位加强堤防工程重点部位的维护和防范,提高和巩固堤防工程的运行周期和防洪能力。
本文以永定河堤防工程护砌质量检测为实例,说明地质雷达技术在堤防工程探测中的应用情况,以此与同行进行切磋,推动堤防工程探测技术的发展,不妥之处,敬请批评指正。2 基本原理 地质雷达与探空雷达相似,利用高频电磁波(主频为数十数百乃至数千兆赫)以宽频带短脉冲的形式,由地面通过发射天线(T)向地下发射,当它遇到地下地质体或介质分界面时发生反射,并返回地面,被放置在地表的接收天线(R)接收,并由主机记录下来,形成雷达剖面图。
由于电磁波在介质中传播时,其路径、电磁波场强度以及波形将随所通过介质的电磁特性及其几何形态而发生变化。因此,根据接收到的电磁波特征,既波的旅行时间(亦称双程走时)、幅度、频率和波形等,通过雷达图像的处理和分析,可确定地下界面或目标体的空间位置或结构特征。
雷达波(电磁波)在界面上的反射和透射遵循Snell定律。实际观测时,由于发射天线与接收天线的距离很近,所以其电磁场方向通常垂直于入射平面,并近似看作法向入射,反射脉冲信号的强度,与界面的反射系数和穿透介质的衰减系数有关,主要取决于周围介质与反射目的体的电导率和介电常数,对于以位移电流为主的介质,既大多数岩石介质属非磁性、非导电介质,常常满足σ/ωε<<1,于是衰减系数(β)的近似值为:既衰减系数与电导率(σ)及磁导率(μ)的平方根成正比,与介电常数(ε)的平方根成反比。
而界面的反射系数为:式中Z为波阻抗,其表达式为:显然,电磁波在地层中的波阻抗值取决于地层特性参数和电磁波的频率。由此可见,电磁波的频率(ω=2πf)越高,波阻抗越大。
对于雷达波常用频率范围(25~1000MHz),一般认为σ<<ωε,因而反射系数r可简写成:上式表明反射系数r主要取决于上下层介电常数差异。应用雷达记录的双程反射时间可以求得目的层的深度H:式中:t为目的层雷达波的反射时间;c为雷达波在真空中的传播速度(0.3m/ns);εr为目的层以上介质相对介电常数均值。
3 工程概况 北京市界内永定河左、右堤防于清朝乾隆年间修筑,后经数次维修和加固形成现有规模,主体为梯形,顶宽约10m,可见堤高约5~6m,堤内坡坡度为1:1.5~1:2.0,外坡相对较缓为1: 2.0~1: 2.5。堤身为人工堆积,主要由粉细砂(中下游段)、卵砾石(上游段)组成。
介质构成复杂多变,分布不均,且处于包气带中,极为干燥。堤基为第四系全新统地层,岩性以粉细砂为主,下游段出现黑色淤泥质粘土夹层,层厚约0.7~2.0m。
地下水位埋深(自地表计):卢沟桥附近约20.0m,至下游逐渐变浅,达省/市界附近(石佛寺)一带约2.0m。永定河卢沟桥下游至省/市界左、右堤防共划定险工段12处23段,分布在左堤约60Km和右堤约30Km范围内,其险工段内坡为浆砌石(厚约40cm——原设计标准)结合铅丝石笼构成的护砌,并于1964~1989年间营建,浆砌石护坡除可见堤身部分露出外,其余部分与铅丝石笼水平护底均埋于河滩滩地以下,一般为3.0~5.0m,外铺8.0m的铅丝石笼护底。
这些险工段在历史上均有决口或抢险加固的记载。为满足北京市对永定河防洪设计的需要,保证该堤防渡汛万无一失,故进行地球物理勘探工作,以检测堤防工程的护砌质量,便于99年6月份之前进行加固处理。
4 测试技术及资料处理 为判断险工段堤内坡护险浆砌石质量的优劣,沿内坡坡脚布置一条雷达探测剖面,并按其走向连续测试。外业施测使用瑞典MALA地质仪器有限公司生产的RAMAC/GPR地质雷达系统,天线的中心频率为250MHz,收发天线的间距为0.6m。
实测采用剖面法,且收发天线方向与测线方向平行。记录点距为0.2m,采样频率为3893MHz,单一记录迹线的采样点数为512,迭加次数为16,记录时窗为180ns,若取堤身土体的雷达波速为0.08~0.10m/ns,表层浆砌石的雷达波速为0.10~0.12m/ns,综合考虑该地层剖面特征,选取雷达波速中值为0.10m/ns,则此时该雷达系统的最小纵向分辨率为8~10cm。
雷达资料的数据处理与地震反射法勘探数据处理基本相同,主要有:①滤波及时频变换处理;②自动时变增益或控制增益处理;③多次重复测量平均处理;④速度分析及雷达合成处理。
4.急需一篇军用雷达论文,大家帮个忙啊
无线电是指在自由空间(包括空气和真空)传播的电磁波,是其中的一个有限频带,上限频率 在300GHz(吉赫兹),下限频率较不统一, 在各种射频规范书, 常见的有三 3KHz~300GHz(ITU-国际电信联盟规定), 9KHz~300GHz, 10KHz~300GHz。
无线电技术是通过无线电波传播信号的技术。 无线电技术的原理在于,导体中电流强弱的改变会产生无线电波。
利用这一现象,通过调制可将信息加载于无线电波之上。当电波通过空间传播到达收信端,电波引起的电磁场变化又会在导体中产生电流。
通过解调将信息从电流变化中提取出来,就达到了信息传递的目的。 麦克斯韦最早在他递交给英国皇家学会的论文《电磁场的动力理论》中阐明了电磁波传播的理论基础。
他的这些工作完成于1861年至1865年之间。 海因里希·鲁道夫·赫兹(Heinrich Rudolf Hertz)在1886年至1888年间首先通过试验验证了麦克斯韦尔的理论。
他证明了无线电辐射具有波的所有特性,并发现电磁场方程可以用偏微分方程表达,通常称为波动方程。 1906年圣诞前夜,雷吉纳德·菲森登(Reginald Fessenden)在美国麻萨诸塞州采用外差法实现了历史上首次无线电广播。
菲森登广播了他自己用小提琴演奏“平安夜”和朗诵《圣经》片段。位于英格兰切尔姆斯福德的马可尼研究中心在1922年开播世界上第一个定期播出的无线电广播娱乐节目。
发明 关于谁是无线电台的发明人还存在争议。 1893年,尼科拉·特斯拉(Nikola Tesla)在美国密苏里州圣路易斯首次公开展示了无线电通信。
在为“费城富兰克林学院”以及全国电灯协会做的报告中,他描述并演示了无线电通信的基本原理。他所制作的仪器包含电子管发明之前无线电系统的所有基本要素。
古列尔莫·马可尼(Guglielmo Marconi)拥有通常被认为是世界上第一个无线电技术的专利,英国专利12039号,“电脉冲及信号传输技术的改进以及所需设备”。 尼科拉·特斯拉1897年在美国获得了无线电技术的专利。
然而,美国专利局于1904年将其专利权撤销,转而授予马可尼发明无线电的专利。这一举动可能是受到马可尼在美国的经济后盾人物,包括汤玛斯·爱迪生,安德鲁·卡耐基影响的结果。
1909年,马可尼和卡尔·费迪南德·布劳恩(Karl Ferdinand Braun)由于“发明无线电报的贡献”获得诺贝尔物理学奖。 1943年,在特斯拉去世后不久,美国最高法院重新认定特斯拉的专利有效。
这一决定承认他的发明在马可尼的专利之前就已完成。有些人认为作出这一决定明显是出于经济原因。
这样二战中的美国政府就可以避免付给马可尼公司专利使用费。 1898年,马可尼在英格兰切尔姆斯福德的霍尔街开办了世界上首家无线电工厂,雇佣了大约50人。
无线电的用途 无线电的最早应用于航海中,使用摩尔斯电报在船与陆地间传递信息。现在,无线电有着多种应用形式,包括无线数据网,各种移动通信以及无线电广播等。
以下是一些无线电技术的主要应用: 通信 声音 * 声音广播的最早形式是航海无线电报。它采用开关控制连续波的发射与否,由此在接收机产生断续的声音信号,即摩尔斯电码。
* 调幅广播可以传播音乐和声音。调幅广播采用幅度调制技术,即话筒处接受的音量越大则电台发射的能量也越大。
这样的信号容易受到诸如闪电或其他干扰源的干扰。 * 调频广播可以比调幅广播更高的保真度传播音乐和声音。
对频率调制而言,话筒处接受的音量越大对应发射信号的频率越高。调频广播工作于甚高频段(Very High Frequency,VHF)。
频段越高,其所拥有的频率带宽也越大,因而可以容纳更多的电台。同时,波长越短的无线电波的传播也越接近于光波直线传播的特性。
* 调频广播的边带可以用来传播数字信号如,电台标识、节目名称简介、网址、股市信息等。在有些国家,当被移动至一个新的地区后,调频收音机可以自动根据边带信息自动寻找原来的频道。
* 航海和航空中使用的话音电台应用VHF调幅技术。这使得飞机和船舶上可以使用轻型天线。
* 政府、消防、警察和商业使用的电台通常在专用频段上应用窄带调频技术。这些应用通常使用5KHz的带宽。
相对于调频广播或电视伴音的16KHz带宽,保真度上不得不作出牺牲。 * 民用或军用高频话音服务使用短波用于船舶,飞机或孤立地点间的通讯。
大多数情况下,都使用单边带技术,这样相对于调幅技术可以节省一半的频带,并更有效地利用发射功率。 * 陆地中继无线电(Terrestial Trunked Radio, TETRA)是一种为军队、警察、急救等特殊部门设计的数字集群电话系统。
电话 * 蜂窝电话或移动电话是当前最普遍应用的无线通信方式。蜂窝电话覆盖区通常分为多个小区。
每个小区由一个基站发射机覆盖。理论上,小区的形状为蜂窝状六边形,这也是蜂窝电话名称的来源。
当前广泛使用的移动电话系统标准包括:GSM,CDMA和TDMA。运营商已经开始提供下一代的3G移动通信服务,其主导标准为UMTS和CDMA2000。
* 卫星电话存在两种形式:INMARSAT 和 铱星系统。两种系统都提供全球覆盖服务。
INMARSAT使用地球同步卫星,需要定。
5.浅谈巡航控制系统在现代汽车上的应用
自动巡航系统来说,在设定巡航速度后,车载电脑可以控制油门,自动保持与前车的安全距离,在GPS的帮助下,会选择一条达到目的地的最佳路线,而且会时时提醒自动巡航系统近一平方公里范围内可能突然出现的物体。
自动巡航系统一接受信息,马上会用它自己的“脑子”判断最佳车速应该是多少,并自动巡航行驶,待确认无潜在危险之后,又会自动恢复到较快的巡航速度。目前,在国内销售的别克君威豪华型和马自达6豪华型等中高档车都配备有自动巡航系统。
2005年,自动巡航系统又有了新的发展,博世公司推出了更加智能化的自适应巡航控制系统(ACC),它不仅可以通过雷达和计算机来鉴别靠近车辆的是自行车、汽车还是行人,而且在传统巡航控制系统的基础上增加了制动功能。目前奔驰、宝马、雷克萨斯的部分车型都装备了该类系统。
以新款奔驰S级为例,其安装的“预防安全系统”具有相当的判断和应变能力,当车载计算机认为该车要发生撞车事故时,它就会自动刹车,关上车窗,拉下遮阳板,拉紧安全带,并把座位调整到最安全的位置。通用汽车则宣布将在2008年之前推出自动驾驶汽车,这种汽车装载的自动巡航控制系统,通过汽车前部的特殊装置测量与前车之间的距离,并且实现自动加速和减速,还可以在汽车超出车道时自动加以纠正。
现有的巡航技术虽然可以在汽车行驶到一定速度后保持这个速度,不必再踩油门,以减轻驾驶员长途驾驶的疲劳,但一遇有紧急情况,驾驶员仍必须刹车减速,以防止事故发生。新型巡航系统则具有高度智能化功能,能够自动调整车速。
记者乘坐的汽车驶出试车场来到街道,另一辆车在前面配合。技术人员启动巡航系统后跟着前车保持一定距离前进,仪表盘上的小型雷达屏幕显示着前面路面路况。
前车减速时,后车也自动减速。前车加速后车也跟着自动加速。
当前面的车辆驶离车道后,屏幕显示前方无障碍,汽车立即恢复既定巡航速度迅速前进,奇妙的技术令人感叹不已。 建议参考下面链接的资料 一、常用的汽车前视雷达 常用的汽车前视雷达有毫米波雷达和激光雷达两种。
激光雷达的工作原理与毫米波雷达的工作原理相似,它们都是是测量发射信号与从物体表而反射信号的时间差,所不同的是毫米波雷达发射电磁波,而激光雷达发射光波。 1.毫米波雷达 毫米波是指工作频率在30- 100 GHz,波长为10- 1 mm的电磁波,毫米波雷达(主要是94 GHz) ,其功能就是精确测量目标的距离和相对速度。
毫米波雷达可以全人候的工作,它不受人气状况的影响,可以在大风大雾、黑夜等条件卜正常运行,而恶劣的气候环境正是交通事故的高发期。随着高频器件和单片微波集成电路的出现和应用,毫米波雷达的性能有了很大的提高,而成木则有所卜降,并且雷达的外型尺寸可以做得很小,便于在汽车上安装。
因此,毫米波雷达就成了汽车前视雷达的首选。 不过毫米波雷达也有它的不足之处:必须采用抗干扰措施。
若没有抗干扰设计,一个雷达有可能致盲数以百计的其它雷达,使其产生错误的目标信息急。有了抗干扰措施,在有上千个其他雷达工作的区域内所有的雷达都可以可靠地运行。
2.激光雷达 激光雷达其所以能在汽车前视雷达得到广泛的应用,是因为激光雷达与毫米波雷达相比,具有体积小、波束窄成木低、无电磁干扰、距离及位置探测准确度高等特点。而近几年来发展的1. 541uM近红外激光雷达具有人眼安全及较高的大气透过率,使激光需达的性价比有了进一步的提高。
激光雷达虽然价格低,对目标的分辨力高,但它在雨天,有灰尘和烟雾的环境卜,性能会有所降低。 3. 多传感信息融合处理 一般来说单个传感器的信息,都有一定的局限性,根据其作出判断容易产生虚警,为了提高对目标的识别和估计能力,就要引入多传感信息融合技术,把分布在不同位置的多个传感器所提供的局部不完整观察量加以融合,消除多传感器之间可能存在的信息冗余和矛盾,加以互补,降低其不确定性,以形成对系统环境相对一致的感知描述,从而提高系统决策的正确性。
对一个实际系统而言,增加传感器的数目,在提高系统的性能的同时也提高了系统的成木,必须综合考虑系统性能和价格之间的关系。 二、国外现状 下面介绍一下本田雅阁汽车电控巡航系统: 1 本田 CCS 的组成 CCS 主要由传感器及各种开关( 主开关、设置/复位/清除开关、P/N 档开关、制动开关、车速传感器)、电控单元、执行器(巡航控制作动器)、指示灯等组成。
2 本田 CCS 的工作过程(图 10) 图10 本田CCS结构简图 2.1 主开关未按下( 断开) 时, 节气门开度由驾驶员控制。安全电磁阀通电打开, 真空阀、通风阀断电关闭。
拉力器膜片右腔内为大气压力,对节气门不进行控制。 2.2 设定巡航车速 主开关闭合时, CCS 指示灯亮, 进入等待状态。
当达到理想车速时, 按下设置开关即进入巡航状态,松开加速踏板即可。此时, 安全阀关闭, 真空阀开启,真空电磁阀在脉冲电流的作用下保持拉力器膜片右腔内一定的负压, 从而保持节气门的开度, 保持设定车速。
2.3 车速自动保持原理 。