1.图像特征点提取原理和特征点匹配原理
图像特征特点及常用的特征提取与匹配方法
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一 颜色特征
(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
(二)常用的特征提取与匹配方法
(1)
颜色直方图
其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
(2) 颜色集
颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系。
2.图像边缘检测算法的研究与实现 的开题报告
摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处理硬件平台,DSP/BIOS为实时操作系统,利用CCS开发环境来构建应用程序;并通过摄像头提取视频序列,实现对边缘检测Sobel算子改进[1]。
关键词 DM642;Sobel算子;程序优化;图像边缘检测 1 引言 边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。
经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。图像边缘检测一直是图像处理中的热点和难点。
近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。
另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。随着DSP芯片处理技术的发展,尤其是在图像处理方面的提高如TMS320C6000系列,为实现高效的、实时的边缘检测提供了可能性[5]。
在经典的边缘检测算法中,Sobel边缘检测算法因其计算量小、实现简单、处理速度快,并且所得的边缘光滑、连续等优点而得到广泛的应用。本文针对Sobel算法的性能,并借助于TMS320DM642处理芯片[3],对该边缘检测算法进行了改进和对程序的优化,满足实时性需求。
2 Sobel边缘检测算法的改进 经典的Sobel图像边缘检测算法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个是检测垂直边缘,一个是检测水平边缘。算法的基本原理:由于图像边缘附近的亮度变化较大,所以可以把那些在邻域内,灰度变化超过某个适当阈值TH的像素点当作边缘点。
Sobel算法的优点是计算简单,速度快。但由于只采用了两个方向模板,只能检测水平方向和垂直方向的边缘,因此,这种算法对于纹理较复杂的图像,其边缘检测效果欠佳;同时,经典Sobel算法认为,凡灰度新值大于或等于阈值的像素点都是边缘点。
这种判定依据是欠合理的,会造成边缘点的误判,因为多噪声点的灰度新值也很大。2.1 图像加权中值滤波 由于图像中的边缘和噪声在频域中均表现为高频成分,所以在边缘检测之前有必要先对图像进行一次滤波处理,减少噪声对边缘检测的影响。
中值滤波是一种非线性信号的处理方法[2],在图像处理中,常用来保护边缘信息;保证滤波的效果。加权中值滤波,首先对每个窗口进行排序,取适当的比例,进行曲线拟合,拟合后的曲线斜率表征了此窗口的图像特征,再根据图像各部分特性适当的选择权重进行加权。
2.2 增加方向模板 除了水平和垂直两方向外,图像的边缘还有其它的方向,如135o和45o等,为了增加算子在某一像素点检测边缘的精度,可将方向模板由2个增加为8个即再在经典的方向模板的基础上增加6个方向模板,如图1所示。2.3 边缘的定位及噪声的去除 通常物体的边缘是连续而光滑的,且边缘具有方向和幅度两个特征,而噪声是随机的。
沿任一边缘点走向总能找到另一个边缘点,且这两个边缘点之间的灰度差和方向差相近。而噪声却不同,在一般情况下,沿任一噪声点很难找到与其灰度值和方差相似的噪声点[4]。
基于这一思想,可以将噪声点和边缘点区分开来。对于一幅数字图像f(x,y),利用上述的8个方向模板Sobel算子对图像中的每个像素计算,取得其中的最大值作为该点的新值,而该最大值对应的模板所表示的方向为该像素点的方向。
若|f(x,y)-f(x+i,y+j)|>TH2,对于任意i=0,1,-1;j=0,1,-1均成立,则可判断点(x,y)为噪声点。图2给出了图像边缘检测系统改进算法的软件流程图。
图1 边缘检测8个方向模板图2 系统结构图3 基于TMS320DM642的图像处理的设计及算法优化3.1 TMS320DM642功能模块及图像处理系统的硬件结构 DSP以高速数字信号处理为目标进行芯片设计,采用改进的哈佛结构(程序总线和数据总线分开)、内部具有硬件乘法器、应用流水线技术、具有良好的并行性和专门用于数字信号处理的指令及超长指令字结构(VLIW)等特点;能完成运算量大的实时数字图像处理工作。 TMS320DM642是TI公式最近推出的功能比较强大的TMS320C6x系列之一,是目前定点DSP领域里性能较高的一款[6]。
其主频是600MHz,8个并行运算单元、专用硬件逻辑、片内存储器和片内外设电路等硬件,处理能力可达4800MIPS。DM642基于C64x内核,并在其基础上增加了很多外围设备和接口,因而在实际工程中的应用更为广泛和简便。
本系统使用50 MHz晶体震荡器作为DSP的外部时钟输入,经过内部锁相。
3.【图像提取特征中,JCD,FCTH,CEDD分别是什么意思;还有什么其他
CEDD: Color and Edge Directivity DescriptorFCTH: Fuzzy Color and Texture HistogramJCD: Joint Composite DescriptorCEDD和FCTH都是基于模糊理论的对对象纹理特征的一种直方图描述,JCD是这两种特征的一种组合.推荐参考下面两篇论文:1:S. Α. Chatzichristofis and Y. S. Boutalis, “CEDD: COLOR AND EDGE DIRECTIVITY DESCRIPTOR - A COMPACT DESCRIPTOR FOR IMAGE INDEXING AND RETRIEVAL.” « 6th International Conference in advanced research on Computer Vision Systems ICVS 2008», May 12 to May 15, 2008, Santorini, Greece2:S. A. Chatzichristofis and Y. S. Boutalis, “FCTH: FUZZY COLOR AND TEXTURE HISTOGRAM- A LOW LEVEL FEATURE FOR ACCURATE IMAGE RETRIEVAL” «9th International Workshop on Image Analysis for Multimedia Interactive Services”, Proceedings: IEEE Computer Society , May 7 to May 9, 2008, Klagenfurt, Austria描述图像的特征有很多,有公开的也有不公开的;对边,对纹理,对色彩,对角点等都有不同的描述;也有对这些不同的组合的.没有什么好建议,楼主只能多看论文才能了解更多了.。
4.基于内容的图像检索的特征提取
基本体整体趋包含颜色、纹理、平面空间对应关系、外形,或者其他统计特征。
图像特征的提取与表达是基于内容的图像检索技术的基础。从广义上讲,图像的特征包括基于文本的特征(如关键字、注释等)和视觉特征(如色彩、纹理、形状、对象表面等)两类。
视觉特征又可分为通用的视觉特征和领域相关的视觉特征。前者用于描述所有图像共有的特征,与图像的具体类型或内容无关,主要包括色彩、纹理和形状;后者则建立在对所描述图像内容的某些先验知识(或假设)的基础上,与具体的应用紧密有关,例如人的面部特征或指纹特征等。
颜色是彩色图像最底层、最直观的物理特征,通常对噪声,图像质量的退化,尺寸、分辨率和方向等的变化具有很强的鲁棒性,是绝大多数基于内容的图像和视频检索的多媒体数据库中使用的特征之一。颜色特征的描述方法主要有以下四种:颜色直方图(ColorHistogram) 它是最简单也是最常用的颜色特征,描述了图像颜色的统计分布特性,具有平移、尺度、旋转不变性。
其核心思想是在颜色空间中采用一定的量化方法对颜色进行量化,然后统计每一个量化通道在整幅图像中所占的比重。常用的颜色空间有RGB,CIE,HSI,HSV空间等,主要的量化方法有最重要信息位、颜色空间划分、颜色空间聚类、参考颜色、图像分割等,文献中讨论了对这些方法进行了讨论和总结。
由于颜色直方图缺乏颜色的空间分布信息,改进的方法包括在颜色索引时加入空间位置信息和基于区域的颜色查询。最简单的方法是子窗口直方图法,即将图像分割成子图像,一一建立索引。
另一文献中将图像分成了大小相等的九个子图像,然后统计每个子图像中的颜色直方图。 颜色相关图(ColorCorrelogram) 其主要思想是用颜色对相对于距离的分布来描述信息,它反映了像素对的空间相关性,以及局部像素分布和总体像素分布的相关性,并且容易计算,特征范围小,效果好。
颜色矩(ColorMoment) 其基本思想是在颜色直方图的基础上计算出每个颜色通的均值、方差、偏差,用这些统计量替代颜色的分布来表示颜色特征。它具有特征量少,处理简单的特点。
颜色一致性矢量(Color Coherence Vectors, CCV) 本质上是一种引入空间信息改进的直方图算法,统计了图像中各颜色最大区域的像素数量。通过分离开一致性像素和非一致性像素,比直方图算法具有更好的区别效果。
纹理是图像的重要特征之一,通常定义为图像的某种局部性质,或是对局部区域中像素之间关系的一种度量,其本质是刻画像素的邻域灰度空间分布规律。纹理特征描述方法大致可以分为四类:统计法、结构法、模型法、频谱法。
统计法统计法分析纹理的主要思想是通过图像中灰度级分布的随机属性来描述纹理特征。最简单的统计法是借助于灰度直方图的矩来描述纹理,但这种方法没有利用像素相对位置的空间信息。
为了利用这些信息,Haralick 等人提出了用共生矩阵来表示纹理特征。 该方法研究了纹理的空间灰度级相关性,构造出一个基于图像像素间方向和距离的共生矩阵,并且从矩阵中提取出反差、能量、熵、相关等统计量作为特征量表示纹理特征。
Tamura 等人基于人类视觉的心理学研究后提出了一些不同的方法来描述纹理特征,给出了几个不同的描述纹理特征的术语:粗糙度(Coarseness) 、对比度(Contrast) 、方向(Directionality) 、线性度(Linelikeness) 、规则度(Regularity) 、粗略度(Roughness) 等。Tamura 纹理和共生矩阵表示的主要区别在于:前者的所有纹理属性都是视觉意义上的,而后者的某些纹理属性不具有视觉意义(如信息熵) 。
这一特点使得Tamura 的纹理表示在图像检索中使用得较多。QBIC 和MARS都进一步证明了这种表示方法。
结构法结构法分析纹理的基本思想是假定纹理模式由纹理基元以一定的、有规律的形式重复排列组合而成,特征提取就变为确定这些基元并定量分析它们的排列规则。Carlucci曾提出一个使用直线段、开放多边形和封闭多边形作为纹理基元的纹理模型,其排列规则由一种图状语法结构定义。
Lu and Fu给过一种树型语法结构表示纹理,他们将纹理按照9 *9 的窗口进行分割,每个分解单元的空间结构表示为一棵树。 因为实际的纹理大都是无规则的,因此结构法受到很大限制。
模型法模型法利用一些成熟的图像模型来描述纹理,如基于随机场统计学的马尔可夫随机场、子回归模型,以及在此基础上产生的多尺度子回归模型 (MultiResolution Simultaneous Autoregressive, MRSA) 等。这些模型的共同特点是通过少量的参数表征纹理。
MRSA 区分不同纹理模式的能力较强,但同时计算开销也较大。频谱法频谱法借助于频率特性来描述纹理特征,包括傅里叶功率谱法 、Gabor 变换 、塔式小波变换( Pyramid Wavelet Transform ,PWT) 、树式小波变换( Tree Wavelet Transform,TWT) 等方法。
Manjunath and Ma 实验指出, Gabor 特征提供了最佳的模式检索精度,检索性能优于TWT 和PWT,略微优于MRSA ,缺点是计算速度慢,其旋转不变性和尺度不变性仍有待讨论。 形状是刻画物体最本质的特征,也是最难描述的图像。
5.跪求会基于灰度化车牌定位的高手
(1)基于水平灰度变化特征的方法,这种方法主要在车牌定位以前, 需要对图像进行预处理,将彩色图像转换为灰度图像,利用车牌区域水平方向的纹理特征进行车牌定位;(2) 基于边缘检测的定位方法,这种方法是利用车牌区域丰富的边缘特征进行车牌定位,能够进行检测的方法有多种,如Roberts 边缘算子、Prewitt 算子、Sobel 算子以及拉普拉斯边缘检测;(3) 基于车牌颜色特征的定位方法,这种方法主要是应用车牌的纹理特征、形状特征和颜色特征即利用车牌字符和车牌底色具有明显的反差特征来排除干扰进行车牌的定位;(4) 基于Hough 变换的车牌定位方法,这种方法是利用车牌边框的几何特征,采取寻找车牌边框直线的方法进行车牌定位;(5) 基于变换域的车牌定位方法,这种方法是将图像从空域变换到频域进行分析,例如采用小波变换等;(6) 基于数学形态学的车牌定位方法,这种方法是利用数学形态学图像处理的基本思想,利用一个结构元素来探测一个图像, 看是否能将这个结构元素很好的填放在图像内部,同时验证填放元素的方法是否有效。
腐蚀、膨胀、开启和关闭是数学形态学的基本运算。
转载请注明出处众文网 » 基于图像空域特征的纹理方法研究毕业论文