1.拉格朗日中值定理的发展简史
人们对拉格朗日中值定理的认识可以上溯到公元前古希腊时代。古希腊数学家在几何研究中得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底”。这正是拉格朗日定理的特殊情况,古希腊数学家阿基米德正是巧妙地利用这一结论,求出抛物弓形的面积.。
意大利卡瓦列里在《不可分量几何学》(1635年)的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦。这是几何形式的微分中值定理,被人们称为卡瓦列里定理。该定理是拉格朗日中值定理在几何学中的表达形式。
1797年,法国数学家拉格朗日在《解析函数论》一书中首先给出了拉格朗日定理,他给出的定理的最初形式是:“函数 在 与 之间连续, 在 与 之间有最小值 与最大值 ,则 必取 与 之间的一个值。”拉格朗日给出最初的证明,但证明并不严格,他给的条件比现在的条件要强,他要求函数 在闭区间上具有连续导数 ,并且他所用的连续也是直观的,而不是抽象的。
十九世纪初,在微积分严格化运动中,柯西给出了拉格朗日中值定理的严格证明,在《无穷小计算教程概论》中,柯西证明了”如果导数 在闭区间 上连续,则必存在一点 ,使得 。 ”柯西又在《微分计算教程》中将拉格朗日中值定理推广为柯西中值定理。
现代形式的拉格朗日中值定理是由法国数学家博(O.Bonnet)给出的,他不是利用导数 的连续性,而是利用罗尔定理对拉格朗日中值定理进行了重新证明。
2.拉格朗日中值定理的内容
拉格朗日中值定理的内容:
若函数f(x)在区间[a,b]满足以下条件:
(1)在[a,b]连续
(2)在(a,b)可导
则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a) a<c<b,使或f(b)-f(a)=f'(c)(b-a) 成立,其中a<c<b
证明: 把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.
做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}x.
易证明此函数在该区间满足条件:
1.G(a)=G(b);
2.G(x)在[a,b]连续;
3.G(x)在(a,b)可导.
此即罗尔定理条件,由罗尔定理条件即证。
扩展资料
拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。
法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。
参考资料:搜狗百科-拉格朗日中值定理
转载请注明出处众文网 » 拉格朗日中值定理毕业论文