1.研究多元函数条件极值有什么意义
首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。
一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处
2.多元函数的极值及其求法:条件极值 拉格朗日乘数法
原发布者:dengjie669
第八节多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。教学重点:多元函数极值的求法。教学难点:利用拉格朗日乘数法求条件极值。教学内容:一、多元函数的极值及最大值、最小值定义设函数在点的某个邻域内有定义,对于该邻域内异于的点,如果都适合不等式,则称函数在点有极大值。如果都适合不等式,则称函数在点有极小值.极大值、极小值统称为极值。使函数取得极值的点称为极值点。例1函数在点(0,0)处有极小值。因为对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面的顶点。例2函数在点(0,0)处有极大值。因为在点(0,0)处函数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负,点(0,0,0)是位于平面下方的锥面的顶点。例3 函数在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。定理1(必要条件)设函数在点具有偏导数,且在点处有极值,则它在该点的偏导数必然为零:证不妨设在点处有极大值。依极大值的定义,在点的某邻域内异于的点都适合不等式特殊地,在该邻域内取,而的点,也应适合不等式这表明一元
3.求函数的零点和极值点的计算方法毕业论文有什么写作思路
函数的零点等价于对应方程的根,计算方法主要是解方程。
对区间上的复可导函数而言,函数的极值点是导函数的变号零点,这时极制值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要bai经历求导运算,解方程,解不等式等。
对于区间上的不可导函数而言,函数的极值可du能存在,因而极值点存在。往往用初等方法。需讨论。例如zhiy=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.
亲,以上是提供,供参考。您可以发dao散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
4.多元函数的极值与最值
求f(x,y)=x³+2xy-y³+2的极值,解:令∂f/∂x=3x²+2y=0。。。。.①再令∂f/∂y=2x-3y²=0。。。。。。②由②得x=(3/2)y²;代入①式得 (27/4)y^4+2y=y[(27/4)y³+2]=0,故得:y₁=0;y₂=-2/3;相应地,x₁=0;x₂=2/3;即有两个驻点:M(0,0);N(-2/3,2/3)。
再求两驻点处的二阶导数:A=∂²f/∂x²=6x; B=∂²f/∂x∂y=2; C=∂²f/∂y²=-6y;M(0,0): A=0;B=2;C=0;B²-AC=4>0,故M不是极值点;N(-2/3,2/3): A=-4<0; B=2; C=-4; B²-AC=4-16=-12<0;故N是极大点。极大值f(x,y)=f(-2/3,2/3)=(-2/3)³+2(-2/3)(2/3)-(2/3)³+2=-16/27-8/9+2=14/27
扩展资料
人们常常说的函数y=f(x),是因变量与一个自变量之间的关系,即因变量的值只依赖于一个自变量,称为一元函数。
但在许多实际问题中往往需要研究因变量与几个自变量之间的关系,即因变量的值依赖于几个自变量。
例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。
参考资料来源:搜狗百科-多元函数
转载请注明出处众文网 » 多元函数的极值毕业论文