1.想具体了解VaR模型及其在金融风险管理中的应用 请专业人士推荐一下
1吕晓荣 股指期货风险管理的研究 [期刊论文] -中国外资2010(8)
2张显柯 我国商业银行个人金融盈利溯源——基于定量与定性方法的结合 [期刊论文] -西南金融2010(10)
3姚禄仕.徐文龙 风险价值法及其在证券投资中的应用 [期刊论文] -价值工程2008(2)
VaR模型及其在金融风险管理中的应用
VaR Model and Its Application for Managing Financial Risk
doi: 摘要:风险价值(简称VaR)是目前国际金融风险管理领域广泛使用的工具,也是度量金融风险的一种新的技术标准.本文着重介绍了VaR的概念、计算及其应用,并指出VaR模型作为衡量金融市场风险的标准在我国的应用前景.作者: 张慧毅徐荣贞蒋玉洁
Author: Zhang Huiyi XV Rongzhen Jiang Yujie
作者单位: 天津科技大学经济与管理学院,天津,300022
2.风险价值法的VaR模型
根据Jorion(1996),VaR可定义为:VaR=E(ω)-ω* ① 式中E(ω)为资产组合的预期价值;ω为资产组合的期末价值;ω*为置信水平α下投资组合的最低期末价值。
又设ω=ω0(1+R) ② 式中ω0为持有期初资产组合价值,R为设定持有期内(通常一年)资产组合的收益率。ω*=ω0(1+R*) ③ R*为资产组合在置信水平α下的最低收益率。
根据数学期望值的基本性质,将②、③式代入①式,有 VaR=E[ω0(1+R)]-ω0(1+R*)=Eω0 Eω0(R)-ω0-ω0R*=ω0 ω0E(R)-ω0-ω0R*=ω0E(R)-ω0R*=ω0[E(R)-R*]ω ∴VaR=ω0[E(R)-R*] ④ 上式公式中④即为该资产组合的VaR值,根据公式④,如果能求出置信水平α下的R*,即可求出该资产组合的VaR值。 VaR模型通常假设如下:⒈市场有效性假设;⒉市场波动是随机的,不存在自相关。
一般来说,利用数学模型定量分析社会经济现象,都必须遵循其假设条件,特别是对于我国金融业来说,由于市场尚需规范,政府干预行为较为严重,不能完全满足强有效性和市场波动的随机性,在利用VaR模型时,只能近似地正态处理。 从前面①、④两式可看出,计算VAR相当于计算E(ω)和ω*或者E(R)和R*的数值。
从目前来看,主要采用三种方法计算VaR值。⒈历史模拟法(historical simulation method) ⒉方差—协方差法 ⒊蒙特卡罗模拟法(Monte Carlo simulation)1、历史模拟法 “历史模拟法”是借助于计算过去一段时间内的资产组合风险收益的频度分布,通过找到历史上一段时间内的平均收益,以及在既定置信水平α下的最低收益率,计算资产组合的VaR值。
“历史模拟法”假定收益随时间独立同分布,以收益的历史数据样本的直方图作为对收益真实分布的估计,分布形式完全由数据决定,不会丢失和扭曲信息,然后用历史数据样本直方图的P—分位数据作为对收益分布的P—分位数—波动的估计。一般地,在频度分布图中横轴衡量某机构某日收入的大小,纵轴衡量一年内出现相应收入组的天数,以此反映该机构过去一年内资产组合收益的频度分布。
首先,计算平均每日收入E(ω) 其次,确定ω*的大小,相当于图中左端每日收入为负数的区间内,给定置信水平 α,寻找和确定相应最低的每日收益值。设置信水平为α,由于观测日为T,则意味差在图的左端让出 t=T*α,即可得到α概率水平下的最低值ω*。
由此可得:VaR=E(ω)-ω*2、方差—协方差法 “方差—协方差”法同样是运用历史资料,计算资产组合的VaR值。其基本思路为:首先,利用历史数据计算资产组合的收益的方差、标准差、协方差;其次,假定资产组合收益是正态分布,可求出在一定置信水平下,反映了分布偏离均值程度的临界值;第三,建立与风险损失的联系,推导VaR值。
设某一资产组合在单位时间内的均值为μ,标准差为σ,R*~μ(μ、σ),又设α为置信水平α下的临界值,根据正态分布的性质,在α概率水平下,可能发生的偏离均值的最大距离为μ-ασ,即R*=μ-ασ。∵E(R)=μ 根据VaR=ω0[E(R)-R*] 有 VaR=ω0[μ-(μ-ασ)]=ω0ασ 假设持有期为 △t,则均值和数准差分别为μ△t和 ,这时上式则变为:VaR=ω0·α· 因此,我们只要能计算出某种组合的数准差σ,则可求出其VaR的值,一般情况下,某种组合的数准差σ可通过如下公式来计算 其中,n为资产组合的金融工具种类,Pi为第i种金融工具的市场价值,σi第i种金融工具的数准差,σij为金融工具i、j的相关系数。
除了历史模拟法和方差—数准差法外,对于计算资产组合的VaR的方法还有更为复杂的“蒙特卡罗模拟法”。它是基于历史数据和既定分布假定的参数特征,借助随机产生的方法模拟出大量的资产组合收益的数值,再计算VaR值。
⒈确认头寸 找到受市场风险影响的各种金融工具的全部头寸 ⒉确认风险因素 确认影响资产组合中金融工具的各种风险因素 ⒊获得持有期内风险因素的收益分布 计算过去年份里的历史上的频度分布 计算过去年份里风险因素的标准差和相关系数 假定特定的参数分布或从历史资料中按自助法随机产生 ⒋将风险因素的收益与金融工具头寸相联系 按照风险因素分解头寸(risk mapping) 将头寸的盯住市场价值(mark to market value)表示为风险因素的函数 ⒌计算资产组合的可变性 利用从步骤3和步骤4得到的结果模拟资产组合收益的频度分布 假定风险因素是呈正态分布,计算资产组合的标准差 利用从步骤3和步骤4得到的结果模拟资产组合收益的频度分布 ⒍给定置信区间推导VAR VaR模型在金融风险管理中的应用 VaR模型在金融风险管理中的应用越来越广泛,特别是随着VaR模型的不断改进,不但应用于金融机构的市场风险、使用风险的定量研究,而且VaR模型正与线性规划模型(LPM)和非线性规划模型(ULPM)等规划模型论,有机地结合起来,确定金融机构市场风险等的最佳定量分析法,以利于金融机构对于潜在风险控制进行最优决策。对于VaR在国外的应用,正如文中引言指出,巴塞尔委员会要求有条件的银行将VaR值结合银行内部模型,计算适应市场风险要求的资本数额;G20建议用VaR来衡量衍生工具的市场风险,并且认为是市场风险测量和控制的最佳方法;SEC也要求美国公司采用VaR模型作为三种可行的披露其衍生交易活动信息的方。
3.VAR方法的VaR模型应用注意问题
尽管VaR模型有其自身的优点,但在具体应用时应注意以下几方面的问题。
1、数据问题。运用数理统计方法计量分析、利用模型进行分析和预测时要有足够的历史数据,如果数据库整体上不能满足风险计量的数据要求,则很难得到正确的结论。另外数据的有效性也是一个重要问题,而且由于市场的发展不成熟,使一些数据不具有代表性,而市场炒作、消息面的引导等原因,使数据非正常变化较大, 缺乏可信性。
2、VaR 在其原理和统计估计方法上存在一定缺陷。
VaR对金融资产或投资组合的风险计算方法是依据过去的收益特征进行统计分析来预测其价格的波动性和相关性, 从而估计可能的最大损失。所以单纯依据风险可能造成损失的客观概率, 只关注风险的统计特征, 并不是系统的风险管理的全部。因为概率不能反映经济主体本身对于面临的风险的意愿或态度,它不能决定经济主体在面临一定量的风险时愿意承受和应该规避的风险的份额。
3、在应用Var模型时隐含了前提假设。
即金融资产组合的未来走势与过去相似,但金融市场的一些突发事件表明,有时未来的变化与过去没有太多的联系,因此VaR方法并不能全面地度量金融资产的市场风险,必须结合敏感性分析,压力测试等方法进行分析。
4、VaR主要使用于正常市场条件下对市场风险的测量。
如果市场出现极端情况,历史数据变得稀少,资产价格的关联性被切断,或是因为金融市场不够规范,金融市场的风险来自人为因素、市场外因素的情况下,这时便无法测量此时的市场风险。
总之, VaR是一种一种既能处理非线性问题又能概括证券组合市场风险的工具,它解决了传统风险定量化工具对于非线性的金融衍生工具适用性差、难以概括证券组合的市场风险的缺点,有利于测量风险、将风险定量化,进而为金融风险管理奠定了良好的基础。随着我国利率市场化、资本项目开放以及衍生金融工具的发展等,金融机构所面临的风险日益复杂,综合考虑、衡量信用风险和包括利率风险、汇率风险等在内的市场风险的必要性越来越大,这为VaR应用提供了广阔的发展空间。但是VaR本身仍存在一定的局限性,而且我国金融市场现阶段与VaR所要求的有关应用条件也还有一定距离。因此VaR的使用应当与其他风险衡量和管理技术、方法相结合。要认识到风险管理一方面需要科学技术方法,另一方面也需要经验性和艺术性的管理思想,在风险管理实践中要将两者有效结合起来,既重科学,又重经验,有效发挥VaR在金融风险管理中的作用。
4.var模型可以研究什么好的文章
计算机语言中的var: VAR 在Pascal 作为程序的保留字,用于定义变量。
如:vara:integer; (定义变量a,类型为整数) var u:array[1..100]of integer;(定义数组u,下标由1至100,数组单元类型为整数) 常用变量类型(具体见 变量 词条): integer 整型 longint 长整型 real 实数型 char 字符型 string 字符串 array 数组 …… 当同时定义多个变量时,只需使用一次var,相同类型的变量也可以写在一起。
转载请注明出处众文网 » var模型应用毕业论文