1.数学论文
一,关于开设《大学数学》课程的思考 数学教研室 卢介景 [摘要] 二十世纪八十年代初期,我国卫生部开始把高等数学列为医学类各专业的必修课程。
几乎同时,世界开始进入“数学技术”的新时代。去年国家教育部高教司组织了一次重要会议,研讨“数学教育在大学教育中的作用”,建议开设“大学数学”课程。
医学院校面对新的挑战、新的要求,当有新的认识、新的行动。本文综合简介有关“数学技术”和“大学数学”的重要资料,结合我校实际提出一些教改建议。
此文也献给即将到来的“国际数学”年——2000年。 [关键词] 数学技术 大学数学 教学改革 一.“数学技术”的新挑战 1984年1月25日,在美国数学会(AMS)和美国数学协议(MAA)联合年会上,美国总统尼克松的科学顾问David说:“……,对数学研究的低水平的资助,只能出自对数学带来的好处的完全不适当的估价。
显然,很少的人认识到如今被如此称颂的‘高技术’本质上是数学技术。”此后,“‘高技术’本质上是数学技术”的说法在学术界,特别是在数学界广为流传。
例如,在欧洲工业数学联合会的宗旨中,就引述了David的这句话。 1989年8月18日,在中国数学会召开的数学教育与科研座谈会上,钱学森教授指出:“……,这是数学技术,即怎样给出一个方法,能使科学的理论通过电子计算机解答具体的科学技术问题。
”“……,数学的发展关系到整个科学技术的发展,而科学技术是第一生产力;所以数学的发展是一件国家大事。” 五十年前,数学虽然也直接为工程技术提供一些工具,但基本方式是间接的:先促进其他科学的发展,再由这些科学提供工程原理和设计的基础。
“高技术”的出现,把我们的社会推进到了数学工程技术的时代。 数学与工程技术之间,在更广阔的范围内和更深刻的程度上,以新的方式直接地相互作用着,极大地推动了数学和工程科学的发展。
数学从后台走向前台。 数学技术的例子是很多的。
例如,代数与密码技术;Radon与CT(计算机层析)技术;大规模线性规划求解技术在经济、管理中的应用;与保险有关的精算学软件;期货、期权交易中的期权定价软件;信息提取与处理软件;小波技术在信息科学中的应用;穿甲弹的计算仿真技术;并行计算技术在气象和工程中的应用;等等。 创建于1964年的美国工程院,过去是不选数学家为院士的。
但是,在1997年选出的85位院士中,有3位数学家;在1998年选出的84位院士中,又有3位数学家。这从一个方面说明了时代对“数学技术”的认可。
鉴于数学科学在21世纪所具有的关键的重要性,即将到来的公元2000年,被联合国定为“国际数学年”。 在今后两千年内,在人类思想领域里,具有压倒性的新情况,将是数学地理解问题占统治地位。
“数学技术”对我国大学数学教育提出了新的挑战。 二.“大学数学”的新要求 1998年10月,教育部高教司在北京组织了一个重要会议,研讨“数学教育在大学教育中的作用”。
在一些重要问题上,教育部领导、专家与第一线数学教师取得了广泛的共识。 在面临21世纪数学思想和方法对世界经济和技术发展起着越来越重要作用的形势下,必须明确:数学是培养和造就各类高层次专门人才的共同基础。
对非数学类专业的学生,大学数学基础课的作用至少有以下三个方面。 首先,它是学生掌握数学工具的主要课程。
目前的主要问题是,对“工具性”的理解过窄,甚至把数学基础课看成只是为专业课程服务的工具。历史的经验告诫我们,这将导致学生基础薄弱、视野狭窄、后劲不足、创新乏力,十分不利于面向21世纪人才的培养。
其次,它是学生培养理性思维的重要载体。 从本质上讲,数学研究的是各种抽象的“数”和“形”的模式结构,运用的主要是逻辑、思辩和推理等理性思维方法。
这种理性思维的训练,是其他学科难以替代的。这对大学生全面素质的提高、分析能力的加强、创新意识的启迪都是至关重要的。
再次,它是学生接受美感熏陶的一种途径。 数学是美学四大中心建构(史诗、音乐、造形和数学)之一。
数学为之努力的目标:将杂乱整理为有序,使经验升华为规律,寻求各种运动的简洁统一的数学表达等,都是数学美的表现,也是人类对美感的追求。 对大学数学教育改革,要转变教育观念,用正确的教育思想指导改革的实践。
要以数学统一性的观点,从全面素质教育的高度,来设计数学基础课程的体系。把微积分、代数、几何以及随机数学作为大学非数学专业的四门必修基础课程,并把这一序列课程统称为《大学数学》。
根据数学教学自身的特点以及长期实践的经验,对大学数学的课堂教学学时,应保障其基本稳定。 对一般理工和财经管理类专业,学时不应少于300,其中少数对数学要求较低的学校和专业,也不应少于240;对农林类各专业,不应少于200;医科类力争不低于140;文科类争取达到140。
数学教学的安排不能过于集中,最好不少于两个学期。 要充分认识数学教改的艰巨性。
大力加强教学方法改革的研究和实验。努力加强数学教学中的实践环节。
指导思想应求基本一致,具体做法则要因校制宜、百花齐放、突出特色。要办出特色,必须。
2.数学论文题目有哪些
数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。下面学术堂整理了一部分数学论文题目供大家参考。
1、数学模型在解决实际问题中的作用
2、中学数学中不等式的证明
3、组合数学与中学数学
4、构造方法在数学解题中的应用
5、高中新教材中数学教学方法探讨
6、组合数学恒等式的证明方法
7、浅谈中学数学教育
8、浅谈中学不等式的几何证明方法
9、数学教育中学生创造性思维能力的培养
10、高等数学在初等数学中的应用
11、向量在几何中的应用
12、情境认识在数学教学中的应用
13、高中数学应用题的编制和一些解题方法
14、浅谈反证法在中学教学中的应用
15、探索证明线段相等的方法
3.数学论文题目有哪些
数学中的研究性学习
数字危机
中学数学中的化归方法
高斯分布的启示
a2+b2≧2ab的变形推广及应用
网络优化
泰勒公式及其应用
浅谈中学数学中的反证法
数学选择题的利和弊
古典文学常见论文一词,谓交谈辞章或交流 思想。 当代,论文常用来指进行各个学术 领域的研究和描述学术研究成果的 文章,简称之为论文。它既是探讨问题进行学术研究的一种 手段,又是描述学术研究成果进行学术交流的一种工具。它包括 学年论文、毕业论文、学位论文、科技论文、成果论文等。
中文名:论文
外文名:The paper
类 型:学年论文、毕业论文、学位论文等
作 用:描述研究成果
意 义:表达自己的学术成果
要 求:有引言,正文,参考资料等
字 数:一般1000以上
4.数学毕业论文,矩阵方面的什么方向题目比较好写点
什么是几何? 数学是研究数量关系和空间形式的一门科学.几何则是侧重研究空间形式. 相传古埃及的尼罗河每年都洪水泛滥,把两岸的土地淹没,人们无法辨认自己的田地,久而久之,人们利用测量与画图来测出土地的周界并计算面积,因而积累了大量的图形知识.后来希腊商人到埃及学会了测量与绘图知识,到公元前338年,希腊人欧几里得对这些知识作了系统的总结和整理,写出了一部关于几何的经典著作——《几何原本》,这就形成了一本完整的几何学.1607年,我国数学家徐光启和意大利传教士利玛窦一起翻译了《几何原本》,同学们学的几何课本就源于这部书. 十八世纪德国著名数学家高斯在19岁时就用圆规和直尺作出了正十七边形.1500年前,我国数学家祖冲之,计算出圆周率在3.1415926与3.1415927之间,他们为几何学的发展作出了杰出的贡献,同学们现在学习的是平面几何,高中要学习立体几何、平面解析几何,大学还要学习微分几何,空间解析几何,黎曼几何等. 二 如何学好几何? 学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”.其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的. 第一 要学好概念.首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映.注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质…… 第二 要学好几何语言.几何语言又分为文字语言和符号语言,几何语言总是和图形相联系.如文字语言:∠1和∠2互为补角,图形见下图,符号语言:∠1+∠2=180°,或∠1=180°-∠2,或∠2=180°-∠1. 第三 要进行直观思维.即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力. 第四 要富于想像.有的问题既要凭借图形,又要进行抽象思维.比如,几何中的“点”没有大小,只有位置.现实生活中的点和实际画出来的点就有大小.所以说,几何中的“点”只存在于大脑思维中.“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中. 第五 要边学习、边总结、边提高.几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结.比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线. 同学们只要认真学习,注意听讲,勤于思考,独立完成作业,是一定能学好几何的.天下无难事,只要肯登攀,胜利将属于你们。
转载请注明出处众文网 » 数学微分几何毕业论文参考题目