1.寻求一篇有关机器人的论文(5000字左右)
数字化家庭是未来智能小区系统的基本单元。
所谓“数字化家庭”就是基于家庭内部提供覆盖整个家庭的智能化服务,包括数据通信、家庭娱乐和信息家电控制功能。 数字化家庭设计的一项主要内容是通信功能的实现,包括家庭与外界的通信及家庭内部相关设施之间的通信。
从现在的发展来看,外部的通信主要通过宽带接入。intenet,而家庭内部的通信,笔者采用目前比较具有竞争力的蓝牙(bluetootlh)无线接入技术。
传统的数字化家庭采用pc进行总体控制,缺乏人性化。笔者根据人工情感的思想设计一种配备多种外部传感器的智能机器人,将此智能机器人视作家庭成员,通过它实现对数字化家庭的控制。
本文主要就智能机器人在数字化家庭医疗保健方面的应用进行模型设计,在智能机器人与医疗仪器和控制pc的通信采用蓝牙技术。整个系统的成本较低,功能较为全面,扩展应用非常广阔,具有极大的市场潜力。
2 智能机器人的总体设计 2.1 智能机器人的多传感器系统 机器人智能技术中最为重要的相关领域是机器人的多感觉系统和多传感信息的集成与融合[1],统称为智能系统的硬件和软件部分。视觉、听觉、力觉、触觉等外部传感器和机器人各关节的内部传感器信息融合使用,可使机器人完成实时图像传输、语音识别、景物辨别、定位、自动避障、目标物探测等重要功能;给机器人加上相关的医疗模块(ccd、camera、立体麦克风、图像采集卡等)和专用医疗传感器部件,再加上医疗专家系统就可以实现医疗保健和远程医疗监护功能。
智能机器人的多传感器系统框图如图1所示。 2.2 智能机器人控制系统 机器人控制系统包含2部分:一是上位机,一般采用pc,它完成机器人的运动轨迹规划、传感器信息融合控制算法、视觉处理、人机接口及远程处理等任务;二是下位机,一般采用多单片机系统或dsp等作为控制器的核心部件,完成电机伺服控制、反馈处理、图像处理、语音识别和通信接口等功能。
如果采用多单片机系统作为下位机,每个处理器完成单一任务,通过信息交换和相互协调完成总体系统功能,但其在信号处理能力上明显有所欠缺。由于dsp擅长对信号的处理,而且对此智能机器人来说经常需要信号处理、图像处理和语音识别,所以采用dsp作为智能机器人控制系统的控制器[2]。
控制系统以dsp(tms320c54x)为核心部件,由蓝牙无线通信、gsm无线通信(支持gprs)、电机驱动、数字罗盘、感觉功能传感器(视觉和听觉等)、医疗传感器和多选一串口通信(rs-232)模块等组成,控制系统框图如图2所示。 (1)系统通过驱动电机和转向电机控制机器人的运动,转向电机利用数字罗盘的信息作为反馈量进行pid控制。
(2)采用爱立信(ericsson)公司的rokl01007型电路作为蓝牙无线通信模块,实现智能机器人与上位机pc的通信和与其他基于蓝牙模块的医疗保健仪器的通信。 (3)支持gprs的gsm无线通信模块支持数据、语音、短信息和传真服务,采用手机通信方式与远端医疗监控中心通信。
(4)由于tms320c54x只有1个串行口,而蓝牙模块、gsm无线模块、数字罗盘和视觉听觉等感觉功能传感器模块都是采用rs一232异步串行通信,所以必须设计1个多选一串口通信模块进行转换处理。当tms320c54x需要蓝牙无线通信模块的数据时通过电路选通;当t~ms320c54x需要某个传感器模块的数据时,关断上次无线通信模块的选通,同时选通该次传感器模块。
这样,各个模块就完成了与1~ms320c54x的串口通信。3 主要医疗保健功能的实现 智能机器人对于数字化家庭的医疗保健可以提供如下的服务: (1)医疗监护 通过集成有蓝牙模块的医疗传感器对家庭成员的主要生理参数如心电、血压、体温、呼吸和血氧饱和度等进行实时检测,通过机器人的处理系统提供本地结果。
(2)远程诊断和会诊 通过机器人的视觉和听觉等感觉功能,将采集的视频、音频等数据结合各项生理参数数据传给远程医疗中心,由医疗中心的专家进行远程监控,结合医疗专家系统对家庭成员的健康状况进行会诊,即提供望(视频)、闻、问(音频)、切(各项生理参数)的服务[3]。 3.1机器人视觉与视频信号的传输 机器人采集的视频信号有2种作用:提供机器人视觉;将采集到的家庭成员的静态图像和动态画面传给远程医疗中心。
机器人视觉的作用是从3维环境图像中获得所需的信息并构造出环境对象的明确而有意义的描述。视觉包括3个过程: (1)图像获取。
通过视觉传感器(立体影像的ccd camera)将3维环境图像转换为电信号。 (2)图像处理。
图像到图像的变换,如特征提取。 (3)图像理解。
在处理的基础上给出环境描述。 通过视频信号的传输,远程医疗中心的医生可以实时了解家庭成员的身体状况和精神状态。
智能机器人根据医生的需要捕捉适合医疗保健和诊断需求的图像,有选择地传输高分辨率和低分辨率的图像。在医疗保健的过程中,对于图像传送有2种不同条件的需求: (1)医生观察家庭成员的皮肤、嘴唇、舌面、指甲和面部表情的颜色时,需要传送静态高清晰度彩色图像;采用的方法是间隔一段时间(例如5分钟)传送1幅高清晰度静态图像。
(2)医生借助。
2.机械手毕业设计
最低0.27元开通文库会员,查看完整内容> 原发布者:baby王雷雷 摘要在当今大规模的制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机械手作为自动化生产线上的重要成员,逐渐被企业认同并采用。
工业机械手的技术水平和应用程度在一定程度上反映了一个国家的工业自动化水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重要性并且劳动强度极大的工作,工作方式一般采取试教在线的方式。
本文将设计一台四自由度的工业机械手,用于给冲压设配运送物料。首先,本文将设计工业机器人的底座、手、手腕、臂部等结构。
然后选择合适的传动方式,驱动方式,搭建工业机器人的结构平台。在此基础上,本文将设计该机械手的控制系统,包括数据采集卡和伺服放大器的选择,反馈方式和反馈元件的选择,端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机械手运行的安全性。
最终实现目标包括:关节的伺服控制和制动问题实时的检测机械手的各关节的运动情况,机械手的示教编程和在线修改程序,设置参考点和回参考点。关键词:机械手;示教编程;伺服;制动ABSTRACTIntoday'slarge-scalemanufacturing,,,,.。
3.跟踪移动机器人系统设计
这个问题问的太大了不好回答啊。设计一个机器人来跟踪别人不是很好吧,要是有个机器人在大街上跟踪某个人的话,这大家都知道了,还能跟踪吗?还有控制问题啊,简单点的一般都用红外线来控制机器人,你学自动化的应该清楚红外线控制是有一定距离的。或者就搞无线设备跟无线路由器一样有天线的那种,但这个我不懂,不能随便乱说,以免误人子弟。从硬件和软件两个方面来回答吧,我也只能是根据个人见解来回答了。
硬件方面:既然是做机器人的话,各个关节的机器臂就要自己来组装了。关节的电动马达市场上有买的,最好是用无刷直流电动机吧。根据各个关节受力不同各个在选择电动机的时候也要有所不同。既然是跟踪的机器人肯定腿部力量要比较大,可以选择功率大点的电机,而转头这些的就可以小一点了。你既然是学自动化的我想应该对单片机很了解了,机器人必不可少的就是单片机了。Motorola公司的DSP56805单片机不错,它有4K的flash存储,主频80MHZ。用你自己熟悉的单片机也可以,能驱动就行。你既然是做跟踪机器人的话,肯定是想获得一些信息。
视觉(眼睛)你就装个摄像头就可以了,要判断机器人所处的环境只能靠自己通过摄像头返回的图像来判断了。要想让机器人更智能的话最好是装传感器了,可以用光敏电阻来分析光照亮。
听觉(耳)可以直接用个麦克风获取声音。也可以装一种压电转换原件,它可以把声音信号转换成相应的电信号。
触觉(手、皮肤)可用压敏原件
温度(皮肤)用热敏原件
嗅觉(鼻)用气体传感器,这个很好弄,消防报警器就用了这个。
我想你要跟踪的话获取这些信息应该是够用了吧。
软件方面:程序肯定是自己写啦,用C或汇编这你知道的,不用多说。仔细研究每个单片机的各个针脚,只有在充分熟悉下才能更好的控制电路,我想开发板你有吧,把各个传感器接和你的单片机相连,用你的程序代码去试着操作。代码方面的不多说,我也不知道怎么写,自己多试。同时自己多去网上找找资料。
希望这些对你能有所帮助,最后祝愿你的机器人早日完成。
4.人工智能的利弊论文2000字
随着科学技术和互联网的发展,地球已经变成了一个小小的地球村,人工智能领域也迅速发展,特别是在中国“2025智造”提出后,国内的人工智能领域也掀起一段热潮,BAT等科技巨头纷纷布局人工智能领域,科大讯飞在语音识别方面也取得了不小的突破,影视明星任泉投资人工智能领域。面对发展如此迅速的人工智能,既有利,也有弊。
人工智能发展的利
目前人工智能已经为人类创造出了非常可观的经济效益,人工智能可以代替人类做大量人类不想做、不能做的工作,而且机器犯错误的概率比人低,并且能够持续工作,大大的提升工作效率,节约了大量的成本,未来的人工智能可能还会代替人类工作,代替人类做家务,帮助人类学习,甚至可以照顾老人和小孩,实时监护人类的健康,生病了直接给人来治疗,延长人类的寿命,让人类的生活变得越来越美好。
人工智能发展的弊
科技的发展是一把双刃剑,汽车分发明颠覆了传统的马车行业,人工智能的发展同样也将颠覆许多行业。机器人代替了许多人类的工作将导致大量的人口失业,机器新的学习速度远远快于人类,阿尔法狗战胜李世石引起人们的恐慌,有人说不怕阿尔法狗战胜李世石,怕的是阿尔法够故意输掉一局,如果未来的某一天,机器人变成像电影《机械姬》中有意识的机器人,那么人类随时会变成机器人的奴隶,同时,人工智能面临着技术失控的危险,霍金曾发出警告,人类面临一个不确定的未来,先进的人工智能设备能够独立思考,并适应环境变化,它们未来或将成为导致人类灭亡的终结者!如果真的有一天,人工智能机器人变成了能独立思考,独立的做出准确的判断,一旦有一天人工智能反客为主,到时人工智能对于人类将会是毁灭性的灾难。甚至被人工智能消灭。地球将被人工智能统治。
任何的科学技术的发展最大的威胁就是失去人类的控制,人工智能亦是如此,无论人工智能如何发展,都必须保证始终受人类控制,在不伤害人类的情况下服务于人类。这样人类才会更加容易的接受人工智能。
人工智能改变了人们的生活,我们对人工智能应加以好的利用,同时要避免带来的弊端,人工智能与人类、与社会、与自然和谐相处,这样才能长远的发展。
5.机械手毕业设计
引 言 在现代工业中,生产过程的机械化、自动化已成为突出的主题。
随着工业现代化的进一步发展,自动化已经成为现代企业中的重要支柱,无人车间、无人生产流水线等等,已经随处可见。同时,现代生产中,存在着各种各样的生产环境,如高温、放射性、有毒气体、有害气体场合以及水下作业等,这些恶劣的生产环境不利于人工进行操作。
工业机械手是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械手是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。
尤其在高温、高压、粉尘、噪声以及带有放射性和污染的场合,应用得更为广泛。在我国,近几年来也有较快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视。
本课题拟开发物料搬运机械手,采用日本三菱公司的FX2N系列PLC,对实验室现有的TVT—99D机械手模型进行开发。该装置机械部分有滚珠丝杠、滑轨、汽缸、气控机械抓手等;电气方面由步进电机、驱动模块、传感器、开关电源、电磁阀、旋转码盘、操作台等部件组成。
我们利用可编程技术,结合相应的硬件装置,控制机械手完成各种动作。本课题是有我和徐立同同学合作共同完成,在整个设计过程中徐立同同学主要负责硬件方面如接线、画各个电气设备的电路接线图等;而我则是主要负责软件部分,在实际的设计调试过程中我主要负责PLC的接线编程、调试等工作。
当然了硬件和软件是不分家的,谁也离不开谁,因此,在整个设计过程中各种方案的敲定与实施均是由我们俩个在指导老师的帮助下共同研究、推敲、讨论试验调试中确定的。为了能够实现机械手可在空间抓放物体,动作灵活多样,适用于可变换生产品种的中小批量自动化生产,广泛应用于柔性自动线。
再加上本课题开发的机械手采用的日本三菱公司的FX2N系列PLC控制,是一种按预先设定的程序进行工件的搬运的自动化装置,可部分代替人工在高温和危险的作业区进行单调持久的作业,并要实现根据工件的简单的变化要求随时更改相关控制参数。为达到这些要求,我们设计的控制方案尽量在我们力所能及的范围内选择最佳的方案。
如在本设计中遇到的对直流电机的控制问题中,在控制直流电机正反转的问题上通过老师的指导我们想到了两种控制方案:一种是在原设备的基础上加上四个继电器实现其控制功能;另一种则是根据三菱公司的FX2N系列PLC的输出端的内部电路的特点,可以在不增加其他设备的情况下实现控制要求。我在最大限度的满足工艺流程和控制要求的同时,还要考虑要有很高的性价比,因此我们选择了后一种方案。
也许后一种方案有其弊端,但目前还没有发现。望大家多多指教。
当然了,由于我们水平的限制和时间的仓促,在很多地方的控制方案还不是很理想,同时还遗留有很多的问题,需要进一步的研究中才能解决,望各位老师和广大同学批评和指教。 机械手的毕业设计说明书一.前言1.1设计的意义与作用机械手是在机械化,自动化生产过程中发展起来的一种新型装置。
在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。
在工业生产过程中,尤其在自动流水线上,零件的加工和搬运都可能用到机械手。本课题就为解决海门恒豪制针有限公司在缝纫机针的生产过程中,抛光这一工艺工作。
缝纫机针且夹紧不方便,要使用一个专用夹具用于抛光工作,为了解决以上传统的缺点,设计了该液压式摆动机械手。1.2机械手的工作原理 该机械手采用了液压驱动方式来实现其工作的要求,工作要求就是机械手臂的上下能够摆动,手臂的回转运动,手腕的回转运动及手部的夹持运动,本次设计的机械手主要用于缝纫机针的抛光工作,可用几台液压摆动机械手与抛光机相配合,进行协调实现抛光工作的自动化生产线,机械手的手指夹持缝纫机针,在即旋转又往复移动的抛光机上进行上下摆动,根据抛光工艺过程,自动线上有4台机械手,各机械手间互传递着缝纫机针,调换缝纫机针的大小头,并进行粗精抛光操作。
1.3抛光自动生产线的组成及工作原理抛光自动生产线的平面布置图如下:1.4.自动生产线的工作方式及组成: 全线由震动式顺针机,上料工作台,4台机械手,4台抛光机和装针斗组成。4只抛光轮分别由电动机带动旋转,由另外的电动机经传动装置(如曲柄滑块机构)带动4只抛光轮一同作左右往复运动,每台机械手分别由自身的电子程序控制器控制,根据抛光工艺要求所编制的程序,依次进行程序转换,控制机械手液压系统的电磁换向阀,从而使机械手按程序进行各种动作。
4台机械手动作相同,全自动线动作过程如下:机械手1在上料。
6.机器人论文
机器人 实用上,机器人(Robot)是自动执行工作的机器装置。
机器人可接受人类指挥,也可以执行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。机器人执行的是取代或是协助人类工作的工作,例如制造业、建筑业,或是危险的工作。
机器人可以是高级整合控制论、机械电子、计算机、材料和仿生学的产物。目前在工业、医学甚至军事等领域中均有重要用途。
欧美国家认为:机器人应该是由计算机控制的通过编排程序具有可以变更的多功能的自动机械,但是日本不同意这种说法。日本人认为“机器人就是任何高级的自动机械”,这就把那种尚需一个人操纵的机械手包括进去了。
因此,很多日本人概念中的机器人,并不是欧美人所定义的。 现在,国际上对机器人的概念已经逐渐趋近一致。
一般说来,人们都可以接受这种说法,即机器人是靠自身动力和控制能力来实现各种功能的一种机器。联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”
机器人能力的评价标准包括:智能,指感觉和感知,包括记忆、运算、比较、鉴别、判断、决策、学习和逻辑推理等;机能,指变通性、通用性或空间占有性等;物理能,指力、速度、连续运行能力、可靠性、联用性、寿命等。因此,可以说机器人是具有生物功能的空间三维坐标机器。
机器人发展简史(引自《环球科学》2007年第二期)1920年 捷克斯洛伐克作家卡雷尔·恰佩克在他的科幻小说《罗萨姆的机器人万能公司》中,根据Robota(捷克文,原意为“劳役、苦工”)和Robotnik(波兰文,原意为“工人”),创造出“机器人”这个词。1939年 美国纽约世博会上展出了西屋电气公司制造的家用机器人Elektro。
它由电缆控制,可以行走,会说77个字,甚至可以抽烟,不过离真正干家务活还差得远。但它让人们对家用机器人的憧憬变得更加具体。
1942年 美国科幻巨匠阿西莫夫提出“机器人三定律”。虽然这只是科幻小说里的创造,但后来成为学术界默认的研发原则。
1948年 诺伯特·维纳出版《控制论》,阐述了机器中的通信和控制机能与人的神经、感觉机能的共同规律,率先提出以计算机为核心的自动化工厂。1954年 美国人乔治·德沃尔制造出世界上第一台可编程的机器人,并注册了专利。
这种机械手能按照不同的程序从事不同的工作,因此具有通用性和灵活性。1956年 在达特茅斯会议上,马文·明斯基提出了他对智能机器的看法:智能机器“能够创建周围环境的抽象模型,如果遇到问题,能够从抽象模型中寻找解决方法”。
这个定义影响到以后30年智能机器人的研究方向。1959年 德沃尔与美国发明家约瑟夫·英格伯格联手制造出第一台工业机器人。
随后,成立了世界上第一家机器人制造工厂——Unimation公司。由于英格伯格对工业机器人的研发和宣传,他也被称为“工业机器人之父”。
1962年 美国AMF公司生产出“VERSTRAN”(意思是万能搬运),与Unimation公司生产的Unimate一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人和机器人研究的热潮。1962年-1963年传感器的应用提高了机器人的可操作性。
人们试着在机器人上安装各种各样的传感器,包括1961年恩斯特采用的触觉传感器,托莫维奇和博尼1962年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡1963年则开始在机器人中加入视觉传感系统,并在1965年,帮助MIT推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统。1965年约翰·霍普金斯大学应用物理实验室研制出Beast机器人。
Beast已经能通过声纳系统、光电管等装置,根据环境校正自己的位置。20世纪60年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。
美国兴起研究第二代带传感器、“有感觉”的机器人,并向人工智能进发。1968年 美国斯坦福研究所公布他们研发成功的机器人Shakey。
它带有视觉传感器,能根据人的指令发现并抓取积木,不过控制它的计算机有一个房间那么大。Shakey可以算是世界第一台智能机器人,拉开了第三代机器人研发的序幕。
1969年 日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的机器人。加藤一郎长期致力于研究仿人机器人,被誉为“仿人机器人之父”。
日本专家一向以研发仿人机器人和娱乐机器人的技术见长,后来更进一步,催生出本田公司的ASIMO和索尼公司的QRIO。1973年 世界上第一次机器人和小型计算机携手合作,就诞生了美国Cincinnati Milacron公司的机器人T3。
1978年 美国Unimation公司推出通用工业机器人PUMA,这标志着工业机器人技术已经完全成熟。PUMA至今仍然工作在工厂第一线。
1984年 英格伯格再推机器人Helpmate,这种机器人能在医院里为病人送饭、送药、送邮件。同年,他还预言:“我要让机器人擦地板,做饭,出去帮我洗车,检查安全”。
1998年 丹麦乐高公司推出机器人(Mind-storms)套件,让机器人制造变得跟搭积木一样,相。
7.求一篇4自由度工业机械手的毕业设计论文
应用实例及精度分析 摘要测量三个自由度机械臂:测量臂的三个自由度,沿X测量对象,Y,Z三个坐标轴平移,只有位置与运动部件的测量跟踪。
关节测量臂是由安装在各关节的相对运动的传感器测得,并因此间接地实现端部执行器的位置测量。 因此,这个问题属于直接的问题机器人运动学。
关键词:测量;自由度;姿势;并联机床,传感器,信号,精密 1 应用实例飞速发展,机器性能要求比较 高。传统该机采用了一系列嵌套的堆叠体,臃肿,以及由于一系列的错误 链的积累,不利于提高精度,传统的四坐标加 较窄的工作机技术,也很难实现任何额外的表面处理,以及 5轴加工工具是非常昂贵的和低的速度。
因此,结构 刚度,承载比,定位精度高,结构紧凑和网上 引起了学者们的机器的注意,水货机因此而诞生。 提出了使用额外的实时测量运动 平台定位精度直接测量机制。
其基本思想是基于额外测量的固定平台和平台之间的身体移动量的测量运动运动平台的运动,通过测量安装时驱动<运动平台 创造的运动特性由药代动力学建模运输传感器机制/>移动平台获得的显示解决方案的地位。当测量 解决前沿速度,满足实时控制的要求,你可以 受益的实时反馈到机床精度补偿和控制。
基于上述想法,以建立一个并行机位置测量系统 机器切割力和变形关节间隙和其他错误的部分排除,以提高定位精度 机。在三自由度串联机构都采用 副然后转向运动是非常灵活的,使用移动副的,往往是需要锻炼,尤其是靠近基地的运动副更是如此。
测量仪由一系列的三自由度机构,罚款密码板的每个回合动关节,以衡量不同之间的角度。其端件由一个界面元素和机器人执行器连接 。
当机床运动平台变化的测量位置,测量仪器 片的端部移动与平台的运动,从而导致米关闭 两个相邻杆之间的角度的每个部分从变精致的密码通过计算卡插入电脑处理软件测得的相对 角落的变化信号,通过运行 运动学正解的实时显示测试程序移动部件的当前位置 量每块板,为了实现位置测量。 2 精度分析主要影响的机械机器人的身体部位,安装误差教育部 零部件制造误差,整机装配误差和机器人的精度。
此外,温度,所产生的驱动杠杆作用的操作力变得 形传输错误,控制系统错误等。测定和补偿这些误差 是在实践中是必不可少的。
2.1测试的基本概念 错误在任何测试过程中,无论多么完美的正方形 测试如何准确的测试方法和装置都不可避免地产生测试 误差,测试结果不能绝对准确。因此,为了测量与相应的精度得到 测试结果,必须正确估计的测量误差,该测试结果的可靠性。
测试误差是测量值与真实值之间的差额,即 △X = X-X0 公式:△x ---定义测试误差; x - - 测量值; X0 ---真正的价值。 其中测得的真实大小本身的真正价值了。
2.2基本类型的测试误差 1)数学表达式错误划分--- 相对绝对误差和误差; - 工具 2)源错误的划分和错误的错误 可怜方法,根据错误的划分---发生系统错误,梯度 误差,随机误差和粗差法 3); 4 )按条件除法---基本误差和附加误差; 5)除以测得的速度误差---静态和动态误差 较差。误差误差间接测量过程中直接测量误差 行的基础上。
物理量不能直接测量,但必须由一定数目的计算出的能量 直接测量的量来确定。由于直接测量 难免产生错误,从这些直接测量的结果包含错误 计算不可避免地包含错误。
间接测量法是 世代的关系的算术平均值的函数的测得的各种参数的要求的直接结果,其结果可以得到 间接测量。 间接测量通常有两个问题:一个是已知的误差测量 寻求间接测量误差,即误差变量从 著名寻求错误的邮件数,以及另一种是间接测量一个给定的误差值,查找每个直接测量然后允许的误差 找到自变量的误差已知的功能。
发现并消除系统误差的2.4 在一定的测试条件,测试方法和目标站 米,通常在测试之前,始终由个人或小的误差存在系统误差因素在固体 法律发生多显著给出所造成的测试系统的影响。通常应在测试前的分析和实验,以确定 的影响是从淘汰的原因,或给予纠正 测量。
若使系统误差减小到其随机误差 的大小相当,可不必单独处理的系统错误,并统一用 作为错误处理的机器。 然而,在实践中系统误差无法完全消除,但也有可能是在测量一些更显著系统错误 差。
特别是,系统错误也隐藏在随机误差,所以也就 关键的问题是如何找到数据来检验是否存在系统错误 差,只有解决了这个问题,它可能要进一步企图消灭此外或更正。 系统误差的两个固定值和变量值??,他们影响各不相同。
值系统误差影响重复测量只的平均值,而 不影响均方根误差。它不仅会导致随机误差分布曲线在转变 位置,而不影响其分布与实际点Bufan 周长。
对于不同的系统误差,由于每个上的大小和方向的 效果的测量图像数据是不一样的,而且还具有固定法,不是偶然波动。 如果在系统误差值显著的变化,不仅会影响重 复杂的多次测量的平均值,而且会影响它的每一个固定的规则 残差和均方根错误。
因此,它不仅会改变随机误差的分布 位置,也使变形的分布,这将使它 残差不具有破坏性,而且还影响到实际分布。因此,法应提供以消除其原因,或取得。
8.急求:机电一体化课程设计《移动机器人单片机控制器设计》悬赏分高
机电一体化课程设计指导书主要内容 1、设计题目确定及要求 2、总体方案确定 (1)总体方案设计 (2)绘制总体方案图 3、伺服系统机械传动部件设计 (1)切削力计算 (2)滚动丝杠螺母副的计算与选型 (3)伺服系统传动设计 (4)步进电机当量扭矩计算及选型 (5)机械传动结构设计(绘制一个轴的机械装配图) 4、控制系统硬件电路设计 (1)确定控制系统方案及绘制系统框图 (2)单片机的选用 (3)存储器的选用与扩展 (4)译码电路设计 (5)接口电路设计 (6)绘制控制系统硬件电路原理图 5、基本的参考图表汇编。
电一体化系统是综合多个学科的系统,包括机械技术,传感器技术,测试技术,电子技术和控制技术,信息与计算机技术。它极大推动了机械工业,兵器行业及其他行业的发展。
其技术结构,产品结构,技术功能与构成,生产方式和管理体系均发生了巨大的变化。使工业生产由机械电气化迈进到机电一体化为特征的数字化,自动化,高精度,微型化,多功能化,智能化的时代。
结合精密机械控制是现代机械的一个重要方向,它能使机械加工的精度又提高一个层次,主要技术是用微机、单片机等现代高科技仪器来控制步进电机,再通过步进电机来实现精密的工作台控制。这个由微机或单片机、步进电机、机械工作机构组成的机械手运动控制系统就是一个很简单的机电一体化的系统。
让我们由这样简单的机电一体化系统重新复习学过的知识, 接触机电一体化系统,为下学期的毕业设计打下一定的基础,另外也是为工作作好准备。目录摘要第一章:绪论1.1引言1.2题目和技术指标要求分析1.3总体方案的工作原理第二章:机械本体结构设计 2.1丝杠导程选择 2.2丝杠支承结构选择 2.3螺旋机构运动部件导向机构选择 2.4步进电机的安装结构以及与丝杠的连接结构设计第三章:步进电机驱动器电路设计第四章:控制器程序流程框图设计第五章:程序代码设计结论第一章 绪论1.1 引言 机械手运动控制系统要求控制精度高,故采用步进电机控制,步进电动机在半闭环控制系统中具有控制精度高 ( 可精确到1度以下) 、可靠性高、使用方便等优点,所以其应用非常普遍,尤其随着混合式步进电机的产生和应用,步进电机的输出功率和力矩不断增加,而成本价格不断降低,为步进电机的推广和应用打下了良好基础, 单片机作为控制部件,对步进电机具有良好的控制能力,下面讨论用一下机械手运动控制系统的设计方法。
1.2题目和技术指标要求分析设计题目:机械手运动控制系统设计。 设计参数:机械手运动范围 0~150mm 机械手移动步距 50 步进电机型号 42BYG0061.3 总体方案的工作原理单片机对步进电机进行控制,通过IO口输出的具有时序的方波作为步进电机的控制信号,信号经过不同的放大电路和不同参数的器件,可以达到不同的放大的要求,放大后能够得到较大的功率。
用四路分别进行放大的信号驱动四相五线的步进电机。而步进电机与滚珠丝杠机构用联轴器连接起来,进而将螺旋运动转化为稳定的水平直线运动。
该系统可分为控制部分、驱动部件、执行元件、传动和导向机构、以及控制软件等几个部分。要求设计该系统的机械及电路的结构和参数、设计部分单片机或微机控制程序,使机械手能够左右步进,并达到技术指标所规定的要求。
机械手运动控制系统机械本体采用步进电机驱动、滚珠丝杆传动、滚动直线导轨导向的总体机构方案。机械本体设计以工作台运动位移控制增量的实现为主要目标,以滚珠丝杆及其周边零部件的选用为主要内容,同时考虑运动相关精度问题。
步进电机控制器采用微机或单片机作为控制部件。采用微机时,可通过ISA总线、并行端口、串行端口传送数据,设计步进电机与微机的接口电路。
采用单片机时,可选用AT89C51, 设计单片机最小系统和步进电机与单片机的接口电路。微机或单片机的软件均采用C语言编写代码。
该机械手运动控制系统采用半闭环伺服系统,通过单片机控制步进电机的驱动,经传动机构带动工作台运动。可实现机械手的+X、-X两个方向的进给和两级调速。
机械手运动控制系统机械本体采用步进电机驱动,滚珠丝杠传动,滚动直线导轨导向的总体结构方案。采用步进电机驱动进给准确,使用位置传感器精确控制机械手移动范围,而且通过给定的脉冲周期,能够以任意速度转动,定距运动较精确。
机械手运动控制系统采用滚珠丝杠副和滚动导轨副传动结构,具有精度高,效率高,寿命长,低能耗,摩擦系数小,较高紧凑,通用性强等特点。第二章 机械本体结构设计2.1 丝杠导程已知机械手移动步距 s = 50um s = L 为步距角, L为导程; 查资料知: 42BYG006型号 的步进电机(八拍)步距角为0.90 则丝杠导程: L = 10 mm 2.2 丝杠的支承机构为提高传动刚度,选择合理的支承结构并正确安装很重要,对传动精度有很大影响。
丝杠主要承受轴向载荷,径向载荷主要是卧式丝杠的自重,因此,丝杠的轴向精度和刚度要求较高。丝杠的支承结构有以下几种:(1) F—0支承结构:一端固定(F),一端自由(0),如下图所示:F—0结构的特点是结构简单,承载能力小,轴向刚度低,压杆稳定。
9.一般以“机械手”为毕业论文题目是什么
西门子PLC在机械手控制中的应用 论文编号:ZD296 论文字数:11309,页数:23 内容摘要 可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用了可编程序的存储器,用来在其内部存储执行逻辑运算,顺序控制,定时,计数和算术操作等面向用户的指令,并通过数字式或模拟式的输入/输出,控制各种类型的机械或生产过程。使用PLC控制比使用接触器继电器控制更加简单、稳定、易维修,并可保证系统运行的经济性和智能化。 本课题以西门子PLC为核心,针对洗涤房2台机械手工程,设计了机械手自动控制系统。首先根据系统要求,对PLC进行了选型,确定了PLC系统的输入输出,画出了输入输出接线方式,同时对系统的软件进行了设计。 本系统为机械手设计提供了一个切实可行的方案,该方案具有性能可靠、生产效率高的特点。系统的构建思想和方法对于其它自动化系统也有一定的借鉴意义。 关键词:机械手;可编程控制器PLC;顺序控制 目录 内容摘要 I 1 引 言 1 1.1 机械手原理 1 1.2 工业机械手各部分功能 2 1.3 机械手在国内外发展状况 4 1.4 本文研究的主要内容 5 2 系统硬件控制电路设计 6 2.1 搬运机械手控制及要求 6 2.2 可编程控制器的选型 7 2.3 控制系统I/O端口分配 11 2.4 电动机电气线路 13 3 系统软件设计 15 3.1 软件方案 15 3.2 系统主程序设计 16 4 结论 20 参考文献 21 以上回答来自: /41-6/6545.htm
记得采纳啊