1.急需关于变压器
基于压流波形特征的变压器继电保护的研究
【英文题名】 Study of Transformer Protection Based on Wave Character of Voltage-Current
【作者中文名】 陈剑;
【导师】 商国才;
【学位授予单位】 华北电力大学;
【学科专业名称】 电力系统及其自动化
【学位年度】 2002
【论文级别】 硕士
【网络出版投稿人】 华北电力大学
【网络出版投稿时间】 2002-05-14
【关键词】 变压器保护; 励磁涌流; 匝间短路; 小波变换;
【英文关键词】 transformer protection,magnetizing inrush,turn-to-turn short current,wavelet transform;
【中文摘要】 利用电磁暂态仿真程序(EMTP)对变压器各种运行状态进行了仿真。从变压器电磁特性出发,提出了利用电源侧电压和电流微分的比值来判别变压器是否含有励磁涌流;通过对电流波形的小波分析,利用小波变换后的能量微分来判断变压器是否发生内部故障。结合上述两方面的优势,提出了基于压流波形特征的变压器继电保护方案。仿真结果表明利用该方案实现的保护准确性高、动作速度快,即能可靠的识别变压器励磁涌流,又能快速的判断变压器内部故障,其中对变压器匝间短路的判断也非常的灵敏、有效。
【英文摘要】 Various states of power transformer are simulated with Electromagnetic Transients Analysis Program(EMTP). Using the ratio of voltage and current differential judges whether the transformer has magnetizing inrush from the transformer's electromagnetism character. Through transforming the current wave by wavelet, using energy differential of the result of the wavelet transform judges whether the transformer occurs interior fault. Combining the advantage of two parts, a new theory of transformer protection bas。
2.电力变压器的差动保护原理及例子
差动保护,是利用基尔霍夫电流定理工作的,也就是把被保护的电气设备看成是一个接点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。其保护范围在输入的两端电流互感器之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。
电力变压器的差动保护,其电流就是取自变压器高、低压侧的变压器电流互感器。
输电线路的差动保护,其电流就是取自该线路两端变电站内线路用电流互感器。举个变压器差动保护的例子。比如一台三绕组变压器,其差动保护的电流取自变压器三侧(高压侧、中压侧、低压侧)的电流互感器。变压器正常运行或发生区外故障(三侧电流互感器以外的区域发生故障,比如某侧线路故障)时,流入变压器的电流和流出的电流相等,差动电流为零,保护不动作。当变压器发生故障时(即区内故障),流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧断路器跳开(此例跳开三侧断路器),使故障设备断开电源。
“赠人玫瑰,手有余香”如有帮助,恳求好评,谢谢了!
3.跪求变压器保护论文
浅谈变压器保护的若干问题摘要:变压器是电力系统最主要的供电设备,如果发生故障将对供电可靠性和系统的正常运行带来严重影响,文章对运行中变压器保护存在的问题进行分析并提出了补救措施。
关键词:变压器;后备保护;主变保护;电流互感器;断路器 变压器是电力系统最主要的供电设备,如发生故障将对供电可靠性和系统的正常运行带来严重影响,因此,装设性能良好、安全可靠的保护装置非常必要。近年来全国发生多起220kV降压变低压侧故障均由于后备保护等存在问题引起的。
一些典型事故再次提醒我们,变压器保护确实存在一些问题影响系统的安全稳定运行。下面对相关问题进行分析。
1相间故障的后备保护存在的问题及解决方法 近年来,变压器由于中、低压侧,特别是低压侧母线故障时断路器未能断弧或拒动,而高压侧保护对此又没有足够的灵敏度,遂导致变压器损坏的事故在国内屡见不鲜。例如,某220kV变电站就因主变10kV母线侧刀闸发生短路故障时,10kV开关未能断弧而造成主变烧毁。
其原因就是主变220kV侧的相间后备保护—复合电压闭锁过流保护的复合电压未选用10kV侧,而220kV、110kV侧的电压闭锁元件对10kV侧短路的灵敏度不够,造成高、中压侧后备保护没能动作,10kV侧短路故障无法排除,而使事故进一步扩大。由此可见,除加强变压器的主保护外,还应对相间后备保护存在的问题进行分析,并采取措施加以改善。
1.1电压闭锁元件灵敏度不足 当过电流保护不符合灵敏度要求时,常采用复合电压闭锁过电流保护方式,而在低压侧母线或出口三相故障时,高、中压侧电压很高,不足以启动低电压元件。解决高、中压侧电压元件灵敏度不足的方法一般采用三侧电压闭锁并联的方式,低压侧可只采用本侧电压。
这种方式要注意电流灵敏度提高后,在低压侧故障切除时可能会因自启动电流过大而造成误动。 1.2电流元件的灵敏度不足 (1)一些110kV双绕组主变的低压侧未装设过流保护,要靠高压侧过流保护作为低压侧母线、线路故障的后备保护,而电源侧线路保护对主变低压侧故障又无足够的灵敏度。
这样,当高压侧后备保护拒动或断路器拒动时,低压侧的故障就没有第二重保护。所以,110kV双绕组主变的低压侧也应装设过流保护作为本侧母线和相邻线路保护的后备。
为防止低压侧断路器拒动,过流保护应做成两个时间段,第一时限跳低压侧(或母联),第二时限跳各侧,以弥补高压侧后备保护电流灵敏度不足的问题。 (2)对于220kV大容量主变而言,由于低压侧加装了限流电抗器,使低压母线的短路电流大幅度下降,遂造成高压侧过流保护的电流元件对低压母线的短路故障灵敏度不足。
如果两台变压器中压侧并联运行,则灵敏度就更差。所以,运行方式的合理安排、保护的合理配置对系统安全稳定运行,防止大面积停电均有非常重要的意义。
合理安排变电站主变的运行方式。目前,110kV配电网以远后备设计为主,110kV及以下电网尽可能以辐射状网络方式运行,强调简化电网运行接线,防止电磁环网可能带来的系统事故,况且电网结构简单、清晰,继电保护的配置与整定也简单。
因此,2台主变的中、低压侧分开运行是有条件的,且可减小低压侧的短路容量。中、低压侧分列运行后,提高了高压侧过流保护的电流元件对低压母线短路故障的灵敏度,为提高供电的可靠性,可在母联上装设备用自投装置。
加强变压器低压侧的后备保护。因低压母线一般不设母差保护,故母线故障要靠变压器的后备保护来切除。
对于低压母线上所带的电容器、线路等设备故障,主变低压侧开关应是切除故障的后备开关,低压侧保护则是这些设备的后备保护。由于高、中压侧后备保护对低压侧故障的灵敏度不高,所以要加强主变低压侧后备保护:在原有配置的基础上再增加一套后备保护作为低压母线保护或其后备,其定值与出线I段或II段相配合,对母线有1.5的灵敏度。
整定时限宜短原因:一是减少变压器出口短路电流对变压器和其它设备的损害;二是防止断路器柜中直流被烧断而不能切除故障。可设两时限,第一时限t1跳本侧(或母分),第二时限t2跳三侧。
在变压器的低压侧配置两套完全独立的过流保护作为低压侧母线的主保护及后备保护,在这种情况下,要求这两套过流保护接于不同的电流互感器,经不同的直流熔断器(自动空气开关)供电,并分别作用于该低压侧断路器和变压器各侧断路器。 2主变保护的直流配置 当10kV母线故障发生在10kV断路器柜内时,弧光窜入直流系统造成整个直流操作电源消失,引起变压器损坏的事故在全国已发生多起,前述的某变电站即是一例。
为保证2套双重化保护的完全独立,以防弧光窜入直流系统引起全站直流停电,变电站要有两段直流母线,两套保护分别由一段母线供电。 220kV降压三绕组变压器的保护电源作如下配置: 第一段母线:主变差动保护,中压侧后备保护,低压侧第一套后备保护。
第二段母线:非电量(含失灵、不一致)保护,高压侧后备保护,低压侧第二套后备保护。 在两组母线上,差动、各后备保护应使用不同的分支直流熔断器(自动空气开关),并注意熔断器。
4.求人帮忙想个有关变压器的论文提纲目录 谢谢了
大型变压器保护若干问题研究 中文摘要4ABSTRACT4-7第一章 绪论7-11 1.1 论文的背景及意义7-8 1.2 本课题研究的现状8-9 1.3 本论文所作的主要工作9-11第二章 差动保护的问题和研究对策11-29 2.1 引言11 2.2 基准侧选取11-13 2.2.1 幅值平衡基准侧选取11-12 2.2.2 相位平衡基准侧选取12-13 2.3 励磁涌流判别13-18 2.3.1 励磁涌流判别分析14-16 2.3.2 励磁涌流判别对策16-17 2.3.3 特殊变压器励磁涌流判别方法17-18 2.3.4 励磁涌流判别小结18 2.4 和应涌流研究18-28 2.4.1 单相和应涌流产生的机理18-21 2.4.2 等值电路中各参数对和应涌流的影响21-23 2.4.3 两种和应涌流异同点23 2.4.4 三相变压器和应涌流分析23-26 2.4.5 对变压器差动保护的影响26-28 2.5 小结28-29第三章 非电量保护的问题和研究对策29-34 3.1 引言29 3.2 非电量保护的特点29-30 3.2.1 非电量保护的优点29 3.2.2 非电量保护的缺点29-30 3.3 非电量保护误动原因分析30-31 3.4 改进非电量保护的对策31-33 3.4.1 非电量保护改进措施31 3.4.2 非电量保护抗干扰措施31 3.4.3 非电量保护配置方案31-32 3.4.4 冷却器全停实现方案32-33 3.5 小结33-34第四章 后备保护的问题和研究对策34-39 4.1 引言34 4.2 主保护配置对后备保护的影响34-35 4.3 变压器后备保护配置方案35-38 4.3.1 500 kV 变压器后备保护配置方案35-36 4.3.2 220 kV 变压器后备保护配置方案36-37 4.3.3 110 kV 变压器后备保护配置方案37 4.3.4 110 kV 变压器后备保护配置特殊问题37-38 4.4 小结38-39第五章 变压器保护标准化设计的分析与实施39-48 5.1 引言39 5.2 标准化设计目的和原则39-40 5.3 标准化设计的统一要求40-43 5.3.1 对各制造厂产品的要求40-41 5.3.2 对设计院的统一要求41-42 5.3.3 对相关设备的统一要求42-43 5.4 变压器保护标准化设计方案43-47 5.4.1 500kV 变压器保护标准化设计方案43-45 5.4.2 220kV 变压器保护标准化设计方案45-46 5.4.3 110kV 变压器保护标准化设计方案46-47 5.5 小结47-48第六章 结论48-49参考文献。
5.求人帮忙想个有关变压器的论文提纲目录 谢谢了
大型变压器保护若干问题研究 中文摘要4ABSTRACT4-7第一章 绪论7-11 1.1 论文的背景及意义7-8 1.2 本课题研究的现状8-9 1.3 本论文所作的主要工作9-11第二章 差动保护的问题和研究对策11-29 2.1 引言11 2.2 基准侧选取11-13 2.2.1 幅值平衡基准侧选取11-12 2.2.2 相位平衡基准侧选取12-13 2.3 励磁涌流判别13-18 2.3.1 励磁涌流判别分析14-16 2.3.2 励磁涌流判别对策16-17 2.3.3 特殊变压器励磁涌流判别方法17-18 2.3.4 励磁涌流判别小结18 2.4 和应涌流研究18-28 2.4.1 单相和应涌流产生的机理18-21 2.4.2 等值电路中各参数对和应涌流的影响21-23 2.4.3 两种和应涌流异同点23 2.4.4 三相变压器和应涌流分析23-26 2.4.5 对变压器差动保护的影响26-28 2.5 小结28-29第三章 非电量保护的问题和研究对策29-34 3.1 引言29 3.2 非电量保护的特点29-30 3.2.1 非电量保护的优点29 3.2.2 非电量保护的缺点29-30 3.3 非电量保护误动原因分析30-31 3.4 改进非电量保护的对策31-33 3.4.1 非电量保护改进措施31 3.4.2 非电量保护抗干扰措施31 3.4.3 非电量保护配置方案31-32 3.4.4 冷却器全停实现方案32-33 3.5 小结33-34第四章 后备保护的问题和研究对策34-39 4.1 引言34 4.2 主保护配置对后备保护的影响34-35 4.3 变压器后备保护配置方案35-38 4.3.1 500 kV 变压器后备保护配置方案35-36 4.3.2 220 kV 变压器后备保护配置方案36-37 4.3.3 110 kV 变压器后备保护配置方案37 4.3.4 110 kV 变压器后备保护配置特殊问题37-38 4.4 小结38-39第五章 变压器保护标准化设计的分析与实施39-48 5.1 引言39 5.2 标准化设计目的和原则39-40 5.3 标准化设计的统一要求40-43 5.3.1 对各制造厂产品的要求40-41 5.3.2 对设计院的统一要求41-42 5.3.3 对相关设备的统一要求42-43 5.4 变压器保护标准化设计方案43-47 5.4.1 500kV 变压器保护标准化设计方案43-45 5.4.2 220kV 变压器保护标准化设计方案45-46 5.4.3 110kV 变压器保护标准化设计方案46-47 5.5 小结47-48第六章 结论48-49参考文献。
转载请注明出处众文网 » 变压器差动保护的研究毕业论文.doc