1.求《炼钢转炉方面的毕业论文》
炼钢转炉汽化冷却系统改造发展循环经济是时代发展的必然趋势,为控制成本节约能源各公司都大力发展循环经济。
济南钢铁总公司适应形势发展,建设燃气-蒸汽发电项目,其中的蒸汽供给改造也势在必行。充分考虑现场工艺要求,对设计进行优化,简洁,使系统更加稳定。
关键词:蒸汽发电,汽包供水,水泵,iFIX4.0,Concept2.61系统改造概述济钢一炼钢25T转炉于1990年相继投产,由三座变为现在的四座,期间经过多次改造升级,但仍然不能适应现在的生产要求。我们对该系统进行了以下改造:对汽包产生的蒸汽进行回收发电;丰富系统的操作画面,完善功能;实现汽包供水泵房的无人值守。
汽包冷却系统作为主站与炼钢转炉操作室进行通信,实现与整个济钢大网络的连接。供水泵房作为从站与汽化室进行通信,由汽化室进行控制,实现无人值守。
系统结构简图如图1所示。此次系统升级上位机为研华工控机,采用iFIX4.0组态软件,Concept2.6编程软件。
下位机为昆腾PLC。系统分布较广涉及通信协议较多,处理好各部分之间的通信成为工程调试的重点。
下面分上位机和下位机详细阐述系统的实现方法。2上位机本次系统配备了两台工控机,其中一台作由操作员进行操作,其运行的iFIX组态软件狗是运行版,另外一台作为工程师站,除了操作员站的所有功能外,还可进行组态编辑画面,历史数据查询等功能,通过Concept修改下位机程序,采用的iFIX组态软件狗是开发版。
使用iFIX4.0组态软件,首先要解决的是与下位机的通信,即配置驱动程序。在系统配置中选择I/O驱动器为MBE。
建立起通讯后直接采集在PLC中定义的六位地址的数据。做完一个工程直接体现在表面,让大家一看就知道的是系统的画面。
它体现了操作是否便捷、功能是否强大、布局是否合理、设计是否美观等因素。因此我们对画面进行了重点设计。
统运行画面如图2所示。在主画面中可以监视到整个系统的运行状况,并可以通过上下方的按钮方便地切换子系统、进行数据查询、切换用户以及如何获得帮助等功能。
在此要强调一下iFIX4.0组态软件的一个重要功能———运行调度。现场有很多需要定时去做的事情,如果由下位机进行控制不但加重了PLC负担,而且由于事件较多在PLC中修改比较困难。
此时iFIX4.0组态软件中的运行调度就大有所为了。特定的时间到后只需给PLC发出指令就行。
汽包软水补水量和产生蒸汽量需要定期记录,根据生产任务要求需要一班(一天倒三次班)记录一次,一个月进行累计。由于未配备打印机,数据由操作员在临下班时作记录。
因此在下班前半小时调度发出指令,由PLC进行数据保存,并将原数据清零重新累计,此时画面仍显示原数据;正点下班时调度发出指令画面显示新累计的数据。3下位机现场控制器又分为汽化冷却主站和供水泵房从站两部分。
主站PLC选用Quantum 53414A的CPU,机后的拨码开关置为01。从站PLC选用Quantum 11303的CPU,机后的拨码开关置为02。
此次着重增加了泵房自动控制功能,由原来的操作人员手动操作,改为无人值守的远程操作。泵房共有三台水泵,两台运行,一台备用。
变频器设有两个速度档位———30Hz和50Hz。经过升级可以自动实现水泵的高低速切换、软水的自动补给、水泵之间的自动倒泵。
水泵之间的自动倒泵控制信号并不是由本地PLC计时发出的,而是接受主站的控制信号,此信号的产生是基于对iFIX组态软件调度的计数值,操作人员可以决定累计几个班后进行自动倒泵。泵房的电源采用两路供电,进线开关采用双电源切换装置,选用备自投自复方式,这也为无人值守提供了较大保证,确保供水的不间断。
要实现远程控制就要将进行通信,由于从站PLC中没有网络模块,所以我们采取Modblus Plus使两站直接进行通信。两站距离较远,为防止信号衰减,在两站之间加中继器完成通信。
主站与从站之间进行数据交换最简便可靠而且占用系统资源又少的方法就是在PLC编程软件中配置Peer Cop。将要发送的数据用BIT-TO-WORD功能块将数据进行打包,同时将接收到的数据用WORD-TO-BIT进行解包。
发送和接收的数据类型和数量要一致,发送的PLC站号和要接收的PLC站号要对应。汽化冷却系统主站肩负的责任较大,首先它要保证汽包中有足够的软水,以防烧毁烟道发生事故;其次它要与从站进行实时通信,确保供水不间断;另外它还要与炼钢PLC进行实时通信,获取相应的炼钢信息。
汽化主站PLC配有QuantumNOE77101网络功能模块,经过交换机与上位机和济钢大网进行连接。与炼钢PLC的通信由于距离较近则采取了ModblusPlus的通讯协议,中间垮了一个地址为10的网桥。
汽包直接为烟道进行降温,因此它决定了烟道,乃至整个转炉的安全运行。它的供水不畅就会为安全生产带来隐患,前几年就是由于汽包不能正常供水发生烟道烧坏的事故。
由此可见汽包供水的重要性。同时汽包供水又不像锅炉供水那样需要严格控制水位,所以我们采取汽包一次性供水,而不是随时供水,一定周期后再补水。
采取此解决办法最重要的就是每次补水量的多少,要保证足量补水。炼钢过程可以分为两个明显的阶段:。
2.速求一篇电炉炼钢的论文
引言 随着现代科学技术的发展和工农业对钢材质量要求的提高,钢厂普遍采用了炉外精炼工艺流程,它已成为现代炼钢工艺中不可缺少的重要环节。
由于这种技术可以提高炼钢设备的生产能力,改善钢材质量,降低能耗,减少耐材、能源和铁合金消耗,因此,炉外精炼技术已成为当今世界钢铁冶金发展的方向。对于炉外精炼技术存在的问题及发展方向有必要进行探讨。
1 国内外炉外精炼技术的发展历程和现状 随着炼钢技术的不断进步,炉外精炼在现代钢铁生产中已经占有重要地位,传统的生产流程(高炉→炼钢炉(电炉或转炉)→铸锭),已逐步被新的流程(高炉→铁水预处理→炼钢炉→炉外精炼→连铸)所代替。已成为国内外大型钢铁企业生产的主要工艺流程,尤其在特殊钢领域,精炼和连铸技术发展得日趋成熟。
精炼工序在整个流程中起到至关重要的作用,一方面通过这道工序可以提高钢的纯净度、去除有害夹杂、进行微合金化和夹杂物变性处理;另一方面,精炼又是一个缓冲环节,有利于连铸生产均衡地进行。 日本在20世纪70年代为了降低炼钢成本,提高钢的纯净度和质量,率先将炉外精炼技术应用于特殊钢生产中,随后西欧的钢铁企业也加入到推广和使用这项技术的行列中。
据资料报道,日本早在1985年精炼率达到65.9%,1989年上升到73.4%,特殊钢的精炼率达到94%,新建电炉短流程钢厂100%采用炉外精炼技术。80年代连铸技术发展迅速,原有的炼钢炉难以满足连铸的技术要求,更加促进了炉外精炼技术的发展,到1990年为止世界各主要工业国家拥有1000多台(套)炉外精炼设备。
我国早在20世纪50年代末,60年代中期就在炼钢生产中采用高碱度合成渣在出钢过程中脱硫冶炼轴承钢、钢包静态脱气等初步精炼技术,但没有精炼的装备。60年代中期至70年代有些特钢企业(大冶、武钢等)引进一批真空精炼设备。
80年代我国自行研制开发的精炼设备逐渐投入使用(如LF炉、喷粉、搅拌设备),黑龙江省冶金研究所等单位联合研制开发了喂线机、包芯线机和合金芯线,完善了炉外精炼技术的辅助技术。现在这项技术已经非常成熟,以炉外精炼技术为核心的“三位一体”短流程工艺广泛应用于国内各钢铁企业,取得了很好的效果。
初炼(电炉或转炉)→精炼→连铸,成了现代化典型的工艺短流程。 2 炉外精炼技术的特点与功能 炉外精炼是指在钢包中进行冶炼的过程,是将真空处理、吹氩搅拌、加热控温、喂线喷粉、微合金化等技术以不同形式组合起来,出钢前尽量除去氧化渣,在钢包内重新造还原渣,保持包内还原性气氛。
炉外精炼的目的是降低钢中的C、P、S、O、H、N、等元素在钢中的含量,以免产生偏析、白点、大颗粒夹杂物,降低钢的抗拉强度、韧性、疲劳强度、抗裂性等性能。这些工作只有在精炼炉上进行,其特点与功能如下: 1)可以改变冶金反应条件。
炼钢中脱氧、脱碳、脱气的反应产物为气体,精炼可以在真空条件下进行,有利于反应的正向进行,通常工作压力≥50Pa,适于对钢液脱气。 2)可以加快熔池的传质速度。
液相传质速度决定冶金反应速度的快慢,精炼过程采用多种搅拌形式(气体搅拌、电磁搅拌、机械搅拌)使系统内的熔体产生流动,加速熔体内传热、传质的过程,达到混合均匀的目的。 3)可以增大渣钢反应的面积。
各种精炼设备均有搅拌装置,搅拌过程中可以使钢渣乳化,合金、钢渣随气泡上浮过程中发生熔化、熔解、聚合反应,通常1吨钢液的渣钢反应面积为0.8~1.3mm2,当渣量为原来的6%时,钢渣乳化后形成半径为0.3mm的渣滴,反应界面会增大1000倍。微合金化、变性处理就是利用这个原理提高精炼效果。
4)可以在电炉(转炉)和连铸之间起到缓冲作用,精炼炉具有灵活性,使作业时间、温度控制较为协调,与连铸形成更加通畅的生产流程。 3 炉外精炼技术在生产中的应用目前得到公认并被广泛应用的炉外精炼方法有:LF法、RH法、VOD法。
3.1 LF法(钢包精炼炉法) 它是1971年由日本大同钢公司发明的,用电弧加热,包底吹氩搅拌。 3.1.1 工艺优点 1)电弧加热热效率高,升温幅度大,控温准确度可达±5℃; 2)具备搅拌和合金化的功能,吹氩搅拌易于实现窄范围合金成份控制,提高产品的稳定性; 3)设备投资少,精炼成本低,适合生产超低硫钢、超低氧钢。
3.1.2 LF法的生产工艺要点 1)加热与控温LF采用电弧加热,热效率高,钢水平均升温1℃耗电0.5~0.8kW·h,LF升温速度决定于供电比功率(kVA/t),而供电的比功率又决定于钢包耐火材料的熔损指数。因采用埋弧泡沫渣技术,可减少电弧的热辐射损失,提高热效率10%~15%,终点温度的精确度≤±5℃。
2)采用白渣精炼工艺。下渣量控制在≤5kg/t,一般采用Al2O3-CaO-SiO2系炉渣,包渣碱度R≥3,以避免炉渣再氧化。
吹氩搅拌时避免钢液裸露。 3)合金微调与窄成份范围控制。
据试验报道,使用合金芯线技术可提高金属回收率,齿轮钢中钛的回收率平均达到87.9%,硼的回收率达64.3%,钢包喂碳线回收率高达90%,ZG30CrMnMoRE喂稀土线稀土回收率达到68%,高的回收率可实现窄成份控制。 3.1.3 LF法在生产实践。
转载请注明出处众文网 » 冶金专业毕业论文炼钢厂