1.求一篇数学与应用数学专业导论
数学与应用数学导论(摘抄,整理)转载 数学在中国历史已久,出土的各时期文物都有关于数字的记录和一些简单的算法,如十进制,勾股定理,乘法法则……然而算盘的出现更加推动了数学在中国的发展,这是当时一些欧洲国家所不能比拟的 从上古时期的结绳,八卦,九九乘法表到中古时期(约汉朝)数学已经在中国发展起来并有一定的基础。
历史上已有可考证的著作,祖冲之的圆周率比西方早1000多年,各种算法著作如解方程、平面立体形的计算、等差等比等问题……更难能可贵的是建立了数学教育制度 到了唐至宋期间,特别是唐朝可以说是数学的黄金年代,数学得到了更近一步的发展,几何、代数达到了新的高峰,其中有系统的代数学已建立起来,更多的数学方法与数学概念也得到更进一步的推广与发展。但是到了近世纪也就是明清时期,中国算数开始衰落,由于中国算数的系统不够简明,中国数学陷入了停滞的阶段。
于此同时西方国家的数学发展进入了一个新阶段。18世纪的西方是各种科学综合发展的世纪,数学已经渗透进各门学科,在物理,化学、天文等各门学科中数学的地位日显重要,各种事物也离不开数学。
18世纪主要以微积分发展为主,欧洲各国循着不同的路线前进。针对曲线作为微积分的主要研究对象发生转折,欧拉则第一次把函数放到了中心的地位,并且是建立在函数的微分的基础之上。
函数概念本身正是由于欧拉等人的研究而大大丰富了。正由于这些学者们大胆创新的精神,微积分显示出它独一无二的作用,以微积分作为粘连剂,数学与力学开始结合,几何与代数开始结合。
以微积分作为推动力,概率论得到进一步发展,数学教育得到发展。十九世纪是数学史上创造精神和严格精神高度发扬的时代,18世纪的数学家忙于获取微积分的成果与应用,较少顾及其概念与方法的严密性,到十八世纪末,为微积分奠基的工作已紧迫地摆在数学家面前;另一方面,处于数学中心课题之外的数学分支已积累了一批重要问题,如复数的意义、欧式几何中平行公设的地位,高次代数方程根式解的可能性等,它们大都是从数学内部提出的课题;再者,自十八世纪后期开始,自然科学出现众多新的研究领域,如热力学、流体力学、电学、磁学、测地学等等,从数学外部给予数学以新的推动力。
上述因素促成了十九世纪数学充满活力的创新与发展。十九世纪数学突破分析学独占主导地位的局面,几何、代数、分析各分支出现如雨后春笋般的竟相发展。
仅在十九世纪的前30多年中,一批二三十岁的年轻数学家就在数论、射影几何、复变函数、微分几何、非欧几何、群论等领域作出开创性的成绩。直到现在数学在任何时刻都有举足轻重的地位,数学与应用数学也事各门专业的基础。
应用数学研究的方向主要分:1)微分方程与应用;2)代数学及其应用;3)几何学及其应用;4)概率论及数理统计;5)非线性分析与分形;6)计算数学与数学建模。数学一直应用在生活与科学中的每一处。
数学在经济学中的应用:数学是经济学大厦的支柱,在数学公式神秘而高贵的支撑下,经济学与其他人文学科相比,就如同皇室成员般举手投足之间常常流露出一种让人敬畏的贵族气息来。数学的用处在于为许多复杂的思想和现象提供了简洁而明了的解释,为许多错综的数据提供了计算模型。
数学在化学中的应用:统计力学需要高数基础,量子化学的方程需要积分和矩阵,分子力学里面全是基于牛顿力学的高等数学方程,在物理化学中的热力学动力学更是离不开它。数学在物理中的应用:物理学的发展离不开数学,数学是物理学发展的根基,并且很多物理问题的解决是数学方法和物理思想巧妙结合的产物,数学对象的丰富多彩给了物理模型创建以广阔的空间。
无论是函数思想,数型结合思想,还是解析方法,方程思想,都使具体的物理对象能够找到它的数学对应。物理更倾向于定量分析(事实上它是最纯粹的定量分析学科)。
数学的基础全部建立在抽象思维之上,因而它简洁明了;物理模型把很难定量的实物转化为抽象的事物,数学便可以大显神通了,雷达、导弹、原子弹等的成功研制是物理学家和数学家们通力合作的结果。数学在计算机中的应用:数学中严密的逻辑思维是计算机的灵魂,离散数学简直就成了计算机的同义词!计算机角度来看,理论计算机科学目前主要的研究领域包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。
这些领域与数学之间互相交叉加上新领域的不断冲突已分不清具体哪里属于数学哪里属于计算机!数学在医学中的应用:主要运用在模型的建立,医学统计学临床上可用来解释疾病发生与流行的程度和规律;评价新药或新技术的治疗效果;揭示生命指标的正常范围,相互的内在联系或发展规律,医学超声始于数学学等学科是当前超声技术已经成为医学发展的一个重要方面,药物动力学是定量研究药物在生物体内吸收、分布、排泄和代谢随时间变化的过程的一门学科,药物动力学模型是为了定量研究药物体内过程的速度规律而建立的模。
2.数学与应用数学
数学与应用数学
开放分类: 科学、数学、专业、应用数学
业务培养目标:
本专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
业务培养要求:
本专业学生主要学习数学和应用数学的基础理论、基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养,初步具备科学研究、教学、解决实际问题及开发软件等方面的基本能力。
毕业生应获得以下几方面的知识和能力:
1.具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;
2.具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应3. 能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力;
4.了解国家科学技术等有关政策和法规;
5.了解数学科学的某些新发展和应用前景;
6. 有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定的科学研究和教学能力。
主干学科:数学。
主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。
主要实践性教学环节:包括计算机实习、生产实习、科研训练或毕业论文等,一般安排10~20周。
修业年限:四年。
授予学位:理学学士。
相近专业:信息与计算科学、统计学。
数学与应用数学(师范类)
业务培养目标:
本专业培养掌握数学科学的基本理论、基础知识与基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具备在高等和中等学校进行数学教学的教师、教学研究人员及其他教育工作者。
业务培养要求:
本专业学生主要学习数学和应用数学的基本理论和方法,受到严格的数学思维训练,掌握计算机的基本原理和运用手段,并通过教育理论课程和教学实践环节,形成良好的教师素养,培养从事数学教学的基本能力和数学教育研究、数学科学研究、数学实际应用等基本能力。
毕业生应获得以下几方面的知识和能力:
1. 具有扎实的数学基础,初步掌握数学科学的基本思想方法,其中包括数学建模、数学计算、解决实际问题等基本能力;
2. 有良好的使用计算机的能力,能够进行简单的程序编写,掌握数学软件和计算机多媒体技术,能够对教学软件进行简单的二次开发;
3. 具备良好的教师职业素养和从事数学教学的基本能力。熟悉教育法规,掌握并初步运用教育学、心理学基本理论以及数学教学理论;
4. 了解近代数学的发展概貌及其在社会发展中的作用,了解数学科学的若干最新发展,数学教学领域的一些最新研究成果和教学方法,了解相近专业的一般原理和知识;学习文理渗透的课程,获得广泛的人文和科学修养;
5.较强的语言表达能力和班级管理能力;
6. 掌握资料查询、文献检索及运用现代信息技术获得相关信息的基本方法,并有一定的科研能力。
主干学科:数学。
主要课程:数学分析、几何学、代数学、物理学、概率论与数理统计、微分方程、函数论、离散数学、数学史、数值方法与计算机技术、数学模型、数学实验、教育学与心理学基础、数学教学论、人文社会科学基础。
主要实践性教学环节:包括教育实习、见习、教育调查、社会调查或毕业论文等,一般安排15~20周。
修业年限:四年。
授予学位:理学学士。
相近专业:信息与计算科学、统计学。
3.应用数学专业毕业论文
先修课程:数学与应用数学专业主要课程、教育类课程等
适用专业:数学与应用数学(本科、师范)
一、目的
培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。
二、论文选题
论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:
1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;
2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;
3.结合自己所学的专业知识,联系实际解决一些应用问题;
4.对中学有关数学课程的教材、教学方法进行专题研究;
5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;
6.对新课程改革的理论与实践进行探讨。
论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。
三、对毕业论文的基本要求
1.立论、观点要符合马克思主义基本原理;
2.对学术的探讨要符合科学性和逻辑性;
3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;
4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;
5.文字通顺,表达确切,书写规范,独立完成;
6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;
7.论文应包括英文名、英文摘要和英文关键词;
8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。
四、毕业论文成绩评定
1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。
毕业生毕业论文统一格式要求
一、论文用纸:B5纸打印。
二、论文标题:
1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文:
1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。
4.应用数学专业
别看这种教育部的什么培养计划,都是套话,等于没说。这种事情还是问教授或者学长比较好,特别是那些毕业的学长。我也是应用数学专业的,这个专业基本上前几年学的全都是最基础的数学知识,与应用一点不沾边,主要是打基础用的,当然,只要你有了一定得基础,可以说,数学系出来的人再难的事也不怕。大一的时候应该还有计算机类的课程,如C语言,数据结构什么的,这些是很有用的,毕竟要应用嘛。一般来说,本科数学加上二专或者研究生什么的选经管类,这种组合基本上是最完美的了,但一般来说经管类的专业很抢手,机会不会很大。选计算机作为二专也是不错的,计算机系的很多基础课程数学系都学过,加上数学系的学生在数学上的绝对优势,其它系的学生基本上没什么竞争力。
数学系毕业其实什么行业都能做,主要是IT行业,金融,计算机,教师之类的。像什么投资银行、精算师、保险、证券公司这些金融行业,基本上只要数学系的人。顺便提一下,数学系毕业当老师也是十分合适的,毕竟前面说的那些行业虽然赚钱多,但是十分辛苦的(比如说:当投资银行高层的话,整个白天都要陪客户,到了晚上10点才能坐下来开始做自己的工作,基本上每天都要到午夜1点以后才能睡觉),老师可以说是最轻松最享受的职业了。当然每个人的追求不同,早点确立自己的目标,从大一开始就开始作准备,到时候你能选择机会就多了。切记,两门基础课程数学分析和高等代数(线性代数)是很重要的基础课程,一定要好好学,以后绝对有帮助。 要说哪个专业好,这个是比较不出来的。至于分数得看了,名牌大学的数学系分数很高,一般大学就比较低了(相对其他专业来说),但名牌大学又是学数学的,给用人单位的印象就是这个人很聪明,所以也可以说是数学系的名声响亮吧。
5.数学与应用数学毕业论文有怎样的格式和要求
毕业论文是学生时代最重要的一件事,事关能否毕业,而毕业论文的格式又决定了一篇论文的水准,所以我们在做毕业论文时,一定要按正确的毕业论文的格式排版。
第一、构成项目 毕业论文包括以下内容: 封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。
如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。
(2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。
(3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。
这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。
(6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。
4、毕业论文格式编排 第一、纸型、页边距及装订线 毕业论文一律用国家标准A4型纸(297mmX210mm)打印。页边距为:天头(上)30mm,地脚(下)25mm,订口(左)30mm,翻口(右)25mm。
装订线在左边,距页边10mm。 第二、版式与用字 文字、图形一律从左至右横写横排,1.5倍行距。
文字一律通栏编辑,使用规范的简化汉字。忌用繁体字、异体字等其他不规范字。
第三、论文各部分的编排式样及字体字号 (1)文头 封面顶部居中,小二号行楷,顶行,居中。固定内容为“成都中医药大学本科毕业论文”。
(2)论文标题 小一号黑体。文头居中,按小一号字体上空一行。
(如果加论文副标题,则要求:小二号黑体,紧挨正标题下居中,文字前加破折号) 论文标题以下的行距为:固定值,40磅。 (3)作者、学院名称、专业、年级、指导教师、日期 项目名称用小三号黑体,后填写的内容处加下划线标明,8个汉字的长度,所填写的内容统一用三号楷体,各占一行,居中对齐。
下空两行。 (4)内容提要及关键词 紧接封面后另起页,版式和字号按正文要求。
其中,“内容提要”和 “:” 黑体,内容用宋体。上空一行,段首空两格,回行顶格:“关键词”与 “内容提要”间隔两行,段首空两格。
“关键词”和 “:” 用黑体,内容用宋体。关键词通常不超过七个,词间空一格。
(5)目录 另起页,项目名称用3号黑体,居中排列,上下各空一行;内容用小4号仿宋。 (6)正文文字:另起页。
(7)论文标题:用二号黑体加粗,居中排列,上空一行;下标明年级、专业、作者,作者姓名另起一行,四号楷体,居中排列;下空两行接正文。正文文字一般用小四号宋体,每段起首空两格,回行顶格,单倍行距。
(8)正文文中标题 一级标题,标题序号为“一、”与正文字号相同,黑体,独占行,末尾不加标点; 二级标题,标题序号为“(二)”,与正文字体字号相同,独占行,末尾不加标点; 三级以下标题序号分别为“1.”和(1),与正文字体字号相同。为避免与注释相互混淆,不可用“①”。
可根据标题的长短确定是否独占行,若独占行,则末尾不使用标点,否则,标题后必须加句号。每级标题的下一级标题应各自连续编号。
(9)注释:正文中加注之处右上角加数码,形式统一为“①”,同时在本页留出适当行数,用横线与正文分开,空两格后定出相应的注号,再写注文。注号以页为单位排序,每个注文各占一段,用小5号宋体。
引用文章时,注文的顺序为:作者、文章标题、刊物名、某年第几期〈例如 : ①龚祥瑞:《论行政合理性原则》, 载《法学杂志》1987年第1期。);引用著作时,注文的顺序为:作者、著作名称、出版者、某年第几版、页数 ( 例如:② [ 英 ] 威廉·韦德著:《行政法》,楚剑译,中国大百科全书出版社 1997年版,第5页。)
(10)附录 项目名称为小四号黑体,在正文后空两行空两格排印,内容编排参考“示范文本”。
(11)参考文献 项目名称用小四号黑体,在正文或附录后空两行顶格排印,另起行空两格用小四号宋体排印参考文献内容,具体编排方式同注释(参考的著作可不写第几页) 。 (12)页码 首页不编页码,从第二页起,居中编排。
转载请注明出处众文网 » 数学与应用数学专业毕业论文