1.随机变量序列的几种收敛性
摘要:极限定理的研究在概率论中占有十分重要的地位,其主要工作是随机变量序列的某种收敛性。
主要研究了随机变量序列的五种收敛性:依概率收敛,依分布收敛,r阶收敛,以概率1收敛,柯西收敛的概念与性质,以及几种收敛相互间的关系。 r阶收敛是随机变量列的数字特征的一种收敛性,与其它收敛关系最弱,而依概率1收敛是最强的一种收敛性;柯西收敛是用随机变量序列本身具有的某种特征判断其收敛性的,不需要知道其收敛的极限,这种准则可方便地判断其收敛性。
(剩余0字)。
2.求一篇函数列几种收敛性的关系及其应用的开题报告,最好有论文
学术论文是科学或者社会研究工作者在学术书籍或学术期刊上刊登的呈现自己研究成果的文章。
学术论文往往强调原创性的工作总结,但也可以是对前人工作总结的回顾及做出评价,后者也往往被称为综述性文章(review)。学术论文的出版正在经历着重大变化,出现了从传统的印刷版到网络上电子格式的兴起。
论文中最重要的就是论点、论据和论证,所以在写作中,一定要对这三点加以重视。论文写作,简单的说,就是大专院校毕业论文的写作,包含着本科生的学士论文,研究生的硕士论文,博士生的博士论文,延伸到了职称论文的写作以及科技论文的写作。
一般来说,论文写作,即高校毕业生,科技工作者以及各科研机构,事业单位工作人员,依据一定的论文格式和字数要求,对学习和工作的学术总结和创新。[1]论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。下面按论文的结构顺序依次叙述。
题目(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。
题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。
命题方式简明扼要,提纲挈领。英文题名方法①英文题名以短语为主要形式,尤以名词短语最常见,即题名基本上由一个或几个名词加上其前置和(或)后置定语构成;短语型题名要确定好中心词,再进行前后修饰。
各个词的顺序很重要,词序不当,会导致表达不准。②一般不要用陈述句,因为题名主要起标示作用,而陈述句容易使题名具有判断式的语义,且不够精炼和醒目。
少数情况(评述性、综述性和驳斥性)下可以用疑问句做题名,因为疑问句有探讨性语气,易引起读者兴趣。③同一篇论文的英文题名与中文题名内容上应一致,但不等于说词语要一一对应。
在许多情况下,个别非实质性的词可以省略或变动。④国外科技期刊一般对题名字数有所限制,有的规定题名不超过2行,每行不超过42个印刷符号和空格;有的要求题名不超过14个词。
这些规定可供我们参考。⑤在论文的英文题名中。
凡可用可不用的冠词均不用。署名(二)论文——署名科学论文应该署真名和真实的工作单位。
主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。
往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。
学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。
引言(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。
要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。
文字要简练。材料方法(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。
这些按杂志对论文投稿规定办即可。实验结果(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。
应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据和不符合实验条件时所得的数据才能废弃不用。
而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。
实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。
能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。
实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。讨论(六)论文——讨论是论文中比较重要,也是比较难写的一部分。
应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。
应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。
3.什么是收敛序列和发散序列
收敛序列和发散序列是以序列的极限为基础的。
微积分中最常使用的收敛序列的意思是一个数学序列接近另一个序列,并且最终达到极限(收敛序列可以应用于曲线、函数或级数h当一条曲线接近X轴或^轴但却不与它们相交时,就可以看到这一点。例如,以上面使用的数字序列,即为例。
这些数字常常越来越靠近我们称之为L的一个数字,以微积分的形式写成如果这些数字确实越来越靠近,并且趋近一个等于L的极限值,那么这个序列就是收敛序列,反过来,如果这个序列不是收敛性的,那么它就是发散序列。大多数数学家和科学家不仅对序列是怎样收敛(或发散的),而且对它收敛的速度(叫做“收敛速度”)非常感兴趣。
序列的极限有几个基本特性,包括收敛序列的极限是唯一的,每个收敛序列都是有界的,任何有界的增大或减小序列都是收敛的。
4.如何深入理解时间序列分析中的平稳性
声明:本文中所有引用部分,如非特别说明,皆引自Time Series Analysis with Applications in R.接触时间序列分析才半年,尽力回答。
如果回答有误,欢迎指出。对第一个问题,我们把它拆分成以下两个问题:Why stationary?(为何要平稳?)Why weak stationary?(为何弱平稳?)Why stationary?(为何要平稳?)每一个统计学问题,我们都需要对其先做一些基本假设。
如在一元线性回归中(),我们要假设:①不相关且非随机(是固定值或当做已知)②独立同分布服从正态分布(均值为0,方差恒定)。在时间序列分析中,我们考虑了很多合理且可以简化问题的假设。
而其中最重要的假设就是平稳。The basic idea of stationarity is that the probability laws that govern the behavior of the process do not change over time.平稳的基本思想是:时间序列的行为并不随时间改变。
正因此,我们定义了两种平稳:Strict stationarity: A time series {} is said to be strictly stationary if the joint distribution of ,, · · ·, is the same as that of,, · · · ,for all choices of natural number n, all choices of time points ,, · · · , and all choices of time lag k.强平稳过程:对于所有可能的n,所有可能的,, · · · , 和所有可能的k,当,, · · ·,的联合分布与,, · · · ,相同时,我们称其强平稳。Weak stationarity: A time series {} is said to be weakly (second-order, or co-variance) stationary if:① the mean function is constant over time, and② γ(t, t ? k) = γ(0, k) for all times t and lags k.弱平稳过程:当①均值函数是常数函数且②协方差函数仅与时间差相关,我们才称其为弱平稳。
此时我们转到第二个问题:Why weak stationary?(为何弱平稳?)我们先来说说两种平稳的差别:两种平稳过程并没有包含关系,即弱平稳不一定是强平稳,强平稳也不一定是弱平稳。一方面,虽然看上去强平稳的要求好像比弱平稳强,但强平稳并不一定是弱平稳,因为其矩不一定存在。
例子:{}独立服从柯西分布。{}是强平稳,但由于柯西分布期望与方差不存在,所以不是弱平稳。
(之所以不存在是因为其并非绝对可积。)另一方面,弱平稳也不一定是强平稳,因为二阶矩性质并不能确定分布的性质。
例子:,,互相独立。这是弱平稳却不是强平稳。
知道了这些造成差别的根本原因后,我们也可以写出两者的一些联系:一阶矩和二阶矩存在时,强平稳过程是弱平稳过程。(条件可简化为二阶矩存在,因为)当联合分布服从多元正态分布时,两平稳过程等价。
(多元正态分布的二阶矩可确定分布性质)而为什么用弱平稳而非强平稳,主要原因是:强平稳条件太强,无论是从理论上还是实际上。理论上,证明一个时间序列是强平稳的一般很难。
正如定义所说,我们要比较,对于所有可能的n,所有可能的,, · · · , 和所有可能的k,当,, · · ·,的联合分布与,, · · · ,相同。当分布很复杂的时候,不仅很难比较所有可能性,也可能很难写出其联合分布函数。
实际上,对于数据,我们也只能估算出它们均值和二阶矩,我们没法知道它们的分布。所以我们在以后的模型构建和预测上都是在用ACF,这些性质都和弱项和性质有关。
而且,教我时间序列教授说过:"General linear process(weak stationarity, linearity, causality) covers about 10% of the real data." ,如果考虑的是强平稳,我觉得可能连5%都没有了。对第二个问题:教授有天在审本科毕业论文,看到一个写金融的,用平稳时间序列去估计股票走势(真不知这老兄怎么想的)。
当时教授就说:“金融领域很多东西之所以难以估计,就是因为其经常突变,根本就不是平稳的。”果不其然,论文最后实践阶段,对于股票选择的正确率在40%。
连期望50%都不到(任意一点以后要么涨要么跌)。暑假里自己用了一些时间序列的方法企图开发程序性交易程序。
刚开始收益率还好,越往后就越后面直接亏损了(是金字塔,第二列是利润率)亏损的图当时没截,现在也没法补了,程序都删了。所以应该和平稳没关系吧,毕竟我的做法也没假设是平稳的。
如果平稳我就不会之后不盈利了。(吐槽)自己果然不适合做股票、期货什么的太高端理解不能以上。
转载请注明出处众文网 » 序列的收敛性毕业论文(随机变量序列的几种收敛性)