1.您好,我在做毕业论文的数据分析,在结构方程模型构建的过程中,
拟合指标看起来都差点意思
觉得首先你可以再考虑一下你的模型,检查检查路径,看看哪里可能存在问题,最简单的是看看单一路径,有哪些是不显著的,这会提示你有哪些路径的设置不合理,修改一下,拟合指标可以提升。当然,同样的方法你也可以去检验一下你的测量模型,看看有哪些题目很不好的,可以删就删。
其次,你看看你数据本身有没有什么问题,比如被试的作答有没有不太好的,比如有没有看起来乱填的,去掉那些明显胡乱作答的,数据质量会有所提升,相应的也许拟合会有改变
再有,品牌态度那个变量的题目太多了,可以考虑做题目打包,9个题打三包就够了,打包方法请自行查阅相关论文吧
各种方法综合一下,总会提升拟合度。另外,拟合度也只是一个经验指标,如果你后来有一些拟合指标变好了,有的,不行,那你也不用太强求,你再综合考量一下模型中的各个测定系数,修正指数等,如果都好,还是可以支持你的模型,这比单一参考拟合指标好
2.HL拟合优度低有可能是哪些原因造成的
不要太看重拟合优度,计量方程的经济学含义远远比统计学意义重要。只要经济学含义是正确的,我们还是认为低拟合优度还是说明了问题。当然,你也可以通过修正异方差、自相关或者取对数、重新设定模型等方式改进模型。
计量分析中不可以随便添加变量,虽然拟合优度增加了,但是调整的拟合优度却可能下降,而且可能产生多重共线的问题。
在含有时间趋势的变量序列中,使用OLS估计一般都有很大的拟合优度,但是很可能存在伪回归的问题。利用协整的方法估计时一般拟合优度要变小,用误差纠正模型估计可能变的更小,然而这两种方法却更正确。我曾经在一篇大概是经济研究杂志上看见过误差纠正模型0.15的拟合优度。一般取对数,然后取差分后的数据是平稳的,但是计量模型的拟合优度会下降。在ARCH模型簇中,拟合优度都特别小,甚至是负数。
回归分为解释型回归和预测型回归。如果你主要是做解释,那么不必太在意R^2,多在意关注变量的显著性和模型整体的显著性。R^2这时小只是表明还遗漏了其它一些对因变量有影响的变量,一般条件下是假定这些遗漏的变量是严格外生的(虽然无法证明,但大家通用);若用于预测,那R^2就重要了。这时,它表示自变量对因变量变异的解释程度。