1.函数的在生活中重要性 论文
函数,是我国古代文绉绉的字眼。外国人叫《福恩克逊》。
函,两个或者两个以上的人或者物之间的,一种影响关系。
例如
信函,电函,函件,致函,包涵。
——不小心踩到你的脚,说声对不起。
假如我没有踩你的脚,就不必说道歉的话语了。
这就是两个人有了某种关系。
在日常生活里,函数比比皆是。
(下面说的或许带有单位量词——函数是纯粹数与数的关系):
超市里买肉,一斤猪肉25块钱。三斤75块钱。那么,钱数与斤数,有个函数关系:y=25x,
一分钟能写二十个汉字。有一篇文稿,二百个汉字。需要多长时间才能写完呢?这也是函数。
一亩地种小麦十八斤种子。每斤种子三块钱。我仅仅带了100元,去种子站购买小麦种子,能买多少呢?够种几亩地的呢?等等,都是函数关系。
买了一袋醋,花了三元。仅仅吃了十天就。函数,是我国古代文绉绉的字眼。外国人叫《福恩克逊》。
函,两个或者两个以上的人或者物之间的,一种影响关系。
例如
信函,电函,函件,致函,包涵。
——不小心踩到你的脚,说声对不起。
假如我没有踩你的脚,就不必说道歉的话语了。
这就是两个人有了某种关系。
在日常生活里,函数比比皆是。
(下面说的或许带有单位量词——函数是纯粹数与数的关系):
超市里买肉,一斤猪肉25块钱。三斤75块钱。那么,钱数与斤数,有个函数关系:y=25x,
一分钟能写二十个汉字。有一篇文稿,二百个汉字。需要多长时间才能写完呢?这也是函数。
一亩地种小麦十八斤种子。每斤种子三块钱。我仅仅带了100元,去种子站购买小麦种子,能买多少呢?够种几亩地的呢?等等,都是函数关系。
买了一袋醋,花了三元。仅仅吃了十天就吃完了。一个月的花销是多少?
一天用电三度,一度电五毛二。一个月用多少钱的电费?
……
……
在日常生活中,处处离不开数字,离不开函数。
2.数学函数的研究价值
数学是无处不在的,数学就是随着人们生活的需要而发展的,函数更是数学中最重要的,因此研究函数是必要的。
比如:生活中的天气预报就是把空气改变走向的数据进行分析,再利用马尔科夫连进行处理就得到了天气的变化情况。
又如:电视信号,电脑存储,雷达,卫星,以及社会规则等都需要数学函数。
数学是最讲理的学科,一切都要讲道理。
学好数学最好的方法是必须弄明白所学的是干什么的,用在何处,另外就是多做题。
3.数学的重要性(论文1000字)
巧赢硬币
记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。”
听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊!
过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。
看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。”
是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。
4.初中的关于函数的数学论文初三数学的函数知识的数学论文
数学论文 相比初二而言,初三的数学更显逻辑性,前面所讲的知识往往就是后面学习的基础。
如果对前面所学的内容不能及时掌握,就会造成知识脱节,跟不上集体学习的进程。在初三数学学习过程中我第一次接触到函数,对此也产生了浓厚的兴趣,下面就让我来谈一谈。
1.经验型理解 主要在于感受变化过程、“对应”现象;尝试探索变化规律的活动;经历研究函数基本性质的过程;尝试根据函数的基本特征做预测的活动。 为后续的函数学习打基础。
函数学习的最基本内容:函数表明了变量之间的对应关系;三种基本的表达形式;基本特征;一些应用。 2.形式化理解 主要在于从事函数内容的实质性学习:包括理解函数的基本概念(自变量、定义域等),相关的性质;借助函数的知识和方法解决问题。
基本途径是从对具体的函数(一次、反比例、二次等)研究开始,深入到一般的层面。 3.结构化理解 主要在于了解不同函数之间的联系;函数与其他数学内容的实质性联系,进而构建函数在初中数学知识系统中的地位。
函数的基础知识在数学和相关学科中有广泛运用,初中函数也是对初中数学知识的总结和对高中数学知识的铺垫,因此初中函数是非常重要的。对于我们初中学生来说,学习的积极性主要取决于学习兴趣和克服困难的毅力。
进入初三之后我们不能再凭借兴趣来学习了,无论是喜欢的或不喜欢的学科或章节我们都应该认真地学习,让我们一起面对初三,在学习生活中克服各种困难 。
5.函数的现实意义是什么就是函数对现实生活的
数的现实意义是什么
就是函数对现实生活的作用,
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素(这只是一元函数f(x)=y的情况,请按英文原文把普遍定义给出,函数的概念对于数学和数量学的每一个分支来说都是最基础的.
术语函数,映射,对应,变换通常都是同一个意思.
历史
函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点.莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类.对于可导函数可以讨论它的极限和导数.此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础.
1718年,约翰·贝努里(en:Johann Bernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量.”1748年,约翰·贝努里的学生欧拉(Leonhard Euler)在《无穷分析引论》一书中说:“一个变量的函数是由该变量和一些数或[常量]]以任何一种方式构成的解析表达式”.例如f(x) = sin(x) + x3.1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:“如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数.”
19世纪的数学家开始对数学的各个分支作规范整理.维尔斯特拉斯(Karl Weierstrass)提出将微积分学建立在算术,而不是几何的基础上,因而更趋向于欧拉的定义.
通过扩展函数的定义,数学家能够对一些“奇怪”的数学对象进行研究,例如不可导的连续函数.这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作“怪物”.稍后,人们发现这些函数在对如布朗运动之类的物理现象进行建模时有重要的作用.
到19世纪末,数学家开始尝试利用集合论来规范数学.他们试图将每一类数学对象定义为一个集合.狄利克雷(Johann Peter Gustav Lejeune Dirichlet)给出了现代正式的函数定义.狄利克雷的定义将函数视作数学关系的特例.然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计.
6.高一数学研究报告函数在生活中的用处
函数在生活中的应用
函数在数学这个大家庭中是一个必不可少的成员,而在日常生活中他也同样随处可见。正如我们学习过的一次函数、二次函数,正比例函数、反比例函数、三角函数。。这些形形样样的函数,都在用不同的表示方法、不同的角度来表示着自然界中变量与变量之间的关系。因此,数学中函数的知识与我们的生活实践有着不可分割的联系。
例如在生活当中的利润问题:总利润=每件利润*销售量、人口增长率问题、个人所得税问题、市场预测问题、运货调配问题、经济图表问题、平衡价格问题、工程造价问题。。这些生活中常见的问题在计算、应用方面离不开函数知识。利用函数就可以把各种数据都放到表格里,然后再绘制成函数图像,从平面直角坐标系中观察出事情发展的趋势以及计算出他们之间的函数关系式,来进行合理的预算。有时还可以利用某些函数的函数图像来求最值。由此可见,函数是十分重要的一部分。
还有涉及函数的应用题,这些应用题更是与生活实际联系密切,它不仅能培养我们分析问题和解决实际问题的能力,还能提高我们的思维素质。同时利用函数也可以更简便地解决问题。所以,学会了解和运用函数也是十分重要的。
方才所说的均是与代数有关的函数,而三角函数则是主要运用在几何问题当中。像利用三角函数求值问题、推算角度问题、判断三角形问题。。也都是非常常见的。
所以,无论是代数还是几何,计算还是应用,考试还是生活,都离不开函数知识。有了函数,可以让我们的生活更加地便利。所以,无论什么时候我们都离不开函数,更离不开数学。就让我们用一颗平凡的心,在生活中一起寻找他们的踪迹吧!
7.小论文:从函数概念的发展变化看数学学科发展的特点
函数的概念最早产生于运动的研究.如伽利略是用文字语言来表述这些函数关系的.“从静止状态开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比”;“沿着同高度但不同坡度的倾斜平板下滑的物体,其下滑的时间与平板的长度成正比”;显然,只需引进适当的符号,上述的函数关系就可以明确的用数学形式表述: ; …以这些具体的函数为原型,17世纪的一些数学家通过弱抽象获得了如下的函数概念:
“函数是这样一个量,它是从一些其它的量通过一系列代数运算而得到的.”
上述定义显然过于狭窄了,因为它事实上仅适用于代数函数的范围.因此,在其后的发展中,函数概念得到了进一步的扩展.随着数学研究的深入,人们逐渐接触到了一些超越函数,如对数函数,指数函数三角函数等,尽管这些函数已经超出了代数函数的范围,但是在一些数学家看来,两者区别仅仅在于超越函数重复代数函数的那些运算无限多次,从而人们又通过弱抽象提出了如下的函数概念:
“函数是指由一个变量与一些常量,通过任何方式(有限的或无限的)形成的解析表达式.”
这一由欧拉给出的定义尽管仍然过于狭窄,在18世纪却曾长期占统治地位.
19世纪初,函数概念再次得到了扩展,函数的概念开始摆脱“解析表达式”,另外狄里克雷更提出了如下的函数概念:
“如果对于给定区间上的每一个x值有唯一的一个y值同它对应,那么,y就是x的一个函数.”
最后,如果用任意的数学对象去取代具体的数量,并采用集合论的语言,则可以获得更为一般的“映射”概念:
如果在两个集合的元素之间存在有确定的对应关系,就称为是一个映射.
函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点。莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类。对于可导函数可以讨论它的极限和导数。此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础。
1718年,约翰·贝努里(en:Johann Bernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量。”1748年,约翰·贝努里的学生欧拉(Leonhard Euler)在《无穷分析引论》一书中说:“一个变量的函数是由该变量和一些数或[常量]]以任何一种方式构成的解析表达式”。例如f(x) = sin(x) + x3。1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:“如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数。”
19世纪的数学家开始对数学的各个分支作规范整理。维尔斯特拉斯(Karl Weierstrass)提出将微积分学建立在算术,而不是几何的基础上,因而更趋向于欧拉的定义。
通过扩展函数的定义,数学家能够对一些“奇怪”的数学对象进行研究,例如不可导的连续函数。这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作“怪物”。稍后,人们发现这些函数在对如布朗运动之类的物理现象进行建模时有重要的作用。
到19世纪末,数学家开始尝试利用集合论来规范数学。他们试图将每一类数学对象定义为一个集合。狄利克雷(Johann Peter Gustav Lejeune Dirichlet)给出了现代正式的函数定义。狄利克雷的定义将函数视作数学关系的特例。然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计。
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.
(一)
转载请注明出处众文网 » 数学毕业论文题目函数重要性(函数的在生活中重要性论文)