1.本科论文的数据分析怎么做
研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。
如果思路上更偏向于差异关系研究,比如不同收入人群对于网购的态度差异。建议使用较多规范的量表题,因为量表规范性很强且可以使用非常多的研究方法;如果不是使用量表题,那么就可以考虑卡方分析进行研究。如果进行更多丰富的研究方法使用,则对应需要使用多样的问题设计,量表题和非量表题均需要有,并且预期上它们就需要进入差异对比的范畴。
如果思路上更偏向于研究影响关系,比如满意度对于忠诚度的影响,看上去,满意度和忠诚度均可以使用量表题进行表示,那设计成量表题没有问题,因为可以使用线性回归分析进行研究。除此之外,还有一种情况可以考虑,即logistic回归,满意度影响最终是否再次购买,是否再次购买被满意度影响,这类情况是应该使用logistic回归分析。如果是希望两类研究方法均使用,此时满意度对应的问题则需要有量表题,还有比如“是否愿意再次购买”一类的定类数据问题。
如果预期数据需要进行统计上的信度分析,此时请记住一定需要设计成量表题,否则无法进行信度分析。以及如果预期思路上有分类,即比如将样本分成3种人群,此时需要考虑使用更多规范的量表题数据。
总结上看,研究方法的匹配使用,事实上应该是在问卷设计前就进入考虑范畴。问卷研究设计完成后,大部分的问卷研究方法均已经确定,因而需要提前将问卷研究方法纳入考虑中,便于可以进行更丰富的数据分析。相对来看,量表题是可以匹配更多的研究方法,而且也更规范,建议更多的使用量表题较好。
参考资料:/p/5
2.怎样用excel进行多元回归分析
用EXCEL做回归分析主要有图表法和函数法:
1、图表法:
选择参与一元线性回归两列数据(自变量x应在应变量y的左侧),插入图表,选择散点图。
选择图表中的数据系列,右击,添加趋势线,点击“选项”选项卡,勾选“显示公式”、显示R平方值。
注意显示出的R2值为R的平方,需要用SQRT()函数,计算出R值。
2、函数法
若X值序列在A1:A100单元格,Y值序列在B1:B100单元格,
则线性公式的截距b
=INTERCEPT(B1:B100,A1:A100)
斜率k
=SLOPE(B1:B100,A1:A100)
相关系数R
=CORREL(A1:A100,B1:B100)
或
=CORREL(B1:B100,A1:A100)
上述两种方法都可以做回归分析,同时结合图表和函数会取得更满意的效果。
3.如何确定应该使用哪种回归分析方法
如果只是比对多种回归模型哪个好,那就选曲线估计,可同时选中线性,二次方等11个模型,拟合度看R2就行,哪个大哪个好。结果中有散点图也可以很直观看出哪种变化模型符合的。
不过一般做回归,首先要考虑的是线性回归,用途最广。
还有用的比较多的是非线性,这个要知道方程的。
至于多项Loistic和probit,说实在的我也不太清楚,书上学的没着重讲,案例分析也不常见。
这些模型都比较专业的,适用某些特定领域,选择的话有文献参照就直接借鉴好了。
4.常见的回归分析方法有哪些
1/6分步阅读
1.线性回归方法:通常因变量和一个(或者多个)自变量之间拟合出来是一条直线(回归线),通常可以用一个普遍的公式来表示:Y(因变量)=a*X(自变量)+b+c,其中b表示截距,a表示直线的斜率,c是误差项。如下图所示。

2/6
2.逻辑回归方法:通常是用来计算“一个事件成功或者失败”的概率,此时的因变量一般是属于二元型的(1 或0,真或假,有或无等)变量。以样本极大似然估计值来选取参数,而不采用最小化平方和误差来选择参数,所以通常要用log等对数函数去拟合。如下图。

3/6
3.多项式回归方法:通常指自变量的指数存在超过1的项,这时候最佳拟合的结果不再是一条直线而是一条曲线。比如:抛物线拟合函数Y=a+b*X^2,如下图所示。

4/6
4.岭回归方法:通常用于自变量数据具有高度相关性的拟合中,这种回归方法可以在原来的偏差基础上再增加一个偏差度来减小总体的标准偏差。如下图是其收缩参数的最小误差公式。

5/6
5.套索回归方法:通常也是用来二次修正回归系数的大小,能够减小参量变化程度以提高线性回归模型的精度。如下图是其惩罚函数,注意这里的惩罚函数用的是绝对值,而不是绝对值的平方。

6/6
6.ElasticNet回归方法:是Lasso和Ridge回归方法的融合体,使用L1来训练,使用L2优先作为正则化矩阵。当相关的特征有很多个时,ElasticNet不同于Lasso,会选择两个。如下图是其常用的理论公式。

5.SPSS怎么进行回归分析 SPSS回归分析教程
多元线性回归
1.打开数据,依次点击:analyse--regression,打开多元线性回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。
3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。
4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
5.选项里面至少选择95%CI。
点击ok。
统计专业研究生工作室原创,请勿复杂粘贴
6.急:spss回归分析该如何具体操作
先做相关分析,出表看 相关关系 analyze - correlate - bivar..选变量
中介变量 m 世界主义倾向 这三个变量的回归 相关关系 y=cx+e M=cx+e y=c`x+bm+e
还是用多元线性回归 在看自变量有没有高度相关,在看看哪个站的比重影响大,对选择的模型做 F检验 看模型是否合适, 在用逐步回归 确定最优模型就行
Dependent和Independent 因变量 自变量 是选的 消费态度与爱国心 世界主义倾向 通过你问卷设计得到的样本数据作分析啊
转载请注明出处众文网 » 毕业论文如何使用回归分析方法(本科论文的数据分析怎么做)