1.为什么很多论文都要用遗传算法,蚁群算法
蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然。蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
2.求毕业设计:蚁群算法实验展示平台的构建与实现
说明:信息素权重,路径权重和信息素蒸发率对最后的结果影响很大,需要微调。
目前发现2 / 5 / 0.5 能达到稍微让人满意的效果。本程序离完美的ACO还差很远,仅供参考。
本蚁群算法为AS算法。用法:1.new一个对象ACOforTSP tsp = new ACPforTSP(tsp数据文件名,迭代次数,蚂蚁数量,信息素权重,路径权重,信息素蒸发率);2.用go()方法运行tsp.go();ACOforTSP.java___________________________________________________________________import java.io.File;import static java.lang.Math.pow;import static java.lang.Math.sqrt;import static java.lang.Math.random;import java.util.HashMap;import java.io.FileReader;import java.io.BufferedReader;/**** @author dvdface*/public class ACOforTSP {//城市的距离表 private double[][] distance; //距离的倒数表 private double[][] heuristic; //启发信息表 private double[][] pheromone; //权重 private int alpha, beta; //迭代的次数 private int iterationTimes; //蚂蚁的数量 private int numbersOfAnt; //蒸发率 private double rate; ACOforTSP (String file, int iterationTimes, int numbersOfAnt, int alpha, int beta, double rate) { //加载文件 this.initializeData(file); //初始化参数 this.iterationTimes = iterationTimes; //设置蚂蚁数量 this.numbersOfAnt = numbersOfAnt; //设置权重 this.alpha = alpha; this.beta = beta; //设置蒸发率 this.rate = rate; } private void initializeData(String filename) { //定义内部类 class City { int no; double x; double y; City(int no, double x, double y) { this.no = no; this.x = x; this.y = y; } private double getDistance(City city) { return sqrt(pow((x - city.x), 2) + pow((y - city.y), 2)); } } try { //定义HashMap保存读取的坐标信息 HashMap 一个程序的核心在于算法。比如说打开一个软件和运行一个软件的速度在计算机硬件性能相同情况下,软件的算法起到了几近决定性作用,所有的计算机软件和硬件的编程都是需要算法的,就算一个hello world程序虽然我们编时候没有用到算法但是在编译他和运行再屏幕显示的时候就是算法了。算法是计算机乃至自然界的核心,如果知道人脑的算法,就可以制造出人工智能的软件。 算法太多,也就不全部列举出来了,具体的还有用法,你自己看下书或去网上找下,都应该可以找到的:比如:贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法等等。 一个程序的核心在于算法。 比如说打开一个软件和运行一个软件的速度在计算机硬件性能相同情况下,软件的算法起到了几近决定性作用,所有的计算机软件和硬件的编程都是需要算法的,就算一个hello world程序虽然我们编时候没有用到算法但是在编译他和运行再屏幕显示的时候就是算法了。算法是计算机乃至自然界的核心,如果知道人脑的算法,就可以制造出人工智能的软件。 算法太多,也就不全部列举出来了,具体的还有用法,你自己看下书或去网上找下,都应该可以找到的:比如:贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法等等。 车辆路径问题(Vehicle Routing Problem,简称VRP)来源于交通运输,由Dantzig[1]于1959年提出,它是组合优化问题中一个典型的NP-hard问题,用于研究亚特兰大炼油厂向各加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点,吸引众多学者对其进行研究。 通常用图G=(V,E)用来描述该问题[2],在图G=(V,E)中,V={0,1,2,…,n},E={(i,j),i≠j,i,j∈V},节点1表示仓库(depot),其它节点为客户。每个客户的需求为qi,边(i,j)对应的距离或运输时间或成本为Cij,所有车辆运输能力为Q,车辆从仓库出发,完成运输任务后回到仓库,每个顾客只能接受一次服务,问题的目标函数通常是车辆数和运输成本最小化。 由于该问题的复杂性,寻找到一种高效、精确的算法的可能性微乎其微,人们开始尝试利用仿生智能算法求解。 蚁群算法是一种新的群体智能启发式优化方法,适合求解车辆路径等组合优化问题。 最初由意大利学者Dorigo[3][4]等人提出用于解决旅行商问题,随着研究的不断深入,已经陆续渗透到电子、通讯、车间调度等工程领域。John E. Bell[5]将蚂蚁系统优化的亚启发式方法应用到VRP问题的求解。 Silvia[6]探讨了在车辆容量限制条件下的VRP问题,在亚启发式算法基础上提出了CVRP 的蚁群算法,并取得较好的效果。刘志勋[7]等在分析VRP和TSP区别基础上,构造了求解VRP的自适应蚁群算法,提出了近似解可行化的解决策略。 蚁群算法由于基本蚁群算法收敛速度慢且易陷于局部最优,很难在较短时间内对大规模VRP求得满意最优解,且该算法极易出现停滞现象,因此有必要对 算法进行改进。 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。 它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。 蚁群算法是一种求解组合最优化问题的新型通用启发式方法,该方法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点。通过建立适当的数学模型,基于故障过电流的配电网故障定位变为一种非线性全局寻优问题。 [编辑本段]预期的结果: 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。 最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。 [编辑本段]原理: 为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。 这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。 然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。 事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢? [编辑本段]下面详细说明: 1、范围: 蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。 2、环境: 蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。 环境以一定的速率让信息素消失。 3、觅食规则: 在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。 否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。 4、移动规则: 每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。 5、避障规则: 如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。 6、播撒信息素规则: 每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。 根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。 ----------------------------------- 蚁群算法的C++程序,是求最优路径的,用vc++6.0来运行,地点之间的距离用矩阵来输入。#include3.计算机专业本科生做毕业论文一般用什么算法
4.计算机专业本科生做毕业论文一般用什么算法
5.基于改进蚁群算法的车辆路径问题研究
6.蚁群算法的内容