1.LED照明电路基本原理
是升压式DC/DC变换器吗??
升压式DC/DC变换器主要用于输出电流较小的场合,只要采用1~2节电池便可获得3~12V工作电压,工作电流可达几十毫安至几百毫安,其转换效率可达70%-80%。
升压式DC/DC变换器的基本工作原理如图所示。
电路中的VT为开关管,当脉冲振荡器对双稳态电路置位(即Q端为1)时,VT导通,电感VT中流过电流并储存能量,直到电感电流在RS上的压降等于比较器设定的闽值电压时,双稳态电路复位,即Q端为0。此时VT截止,电感LT中储存的能量通过一极管VD1供给负载,同时对C进行充电。当负载电压要跌落时,电容C放电,这时输出端可获得高于输大端的稳定电压。输出的电压由分压器R1和R2分压后输入误差放大器,并与基准电压一起去控制脉冲宽度,由此而获得所需要的电压,即
式中:VR——基准电压。
LED昭明电路原理?你有图吗?让我看一下先啦。
先讲讲二极管原理吧(LED:Light Emitting Diode)
LED的发光原理是利用半导体中的电子和电洞结合而发出光子,不同於灯泡需要在3000度以上的高温下操作,也不必像日光灯需使用高电压激发电子束,LED和一般的电子元件相同,只需要2~4伏特(V)的电压,在常温下就可以正常动作,因此其寿命也比传统光源来得更长。
LED所发出的颜色,主要是取决於电子与电洞结合所释放出来的能量高低,也就是由所用的半导体材料的能隙所决定。同一种材料的波长都很接近,因此每一颗LED的光色都很纯正,与传统光源都混有多种颜色相比,LED可说是一种数位化的光源。
LED晶片大小可以因用途而随意切割,常用的大小为0.3~1mm左右,跟传统的灯泡或日光灯相比,体积相对小得多。为了使用方便,LED通常都使用树脂包装,做成5mm左右的各种形状,十分坚固耐震。
2.LED节能灯的工作原理及原理图
LED我做了一年多,驱动方面不难,网上资料也很多,你可以看看。
我觉得对LED本身的了解更为重要,只有摸清了它的脾气,才能设计出好的驱动来。前段时间去上海参加了国际LED技术展,颇有收获,把LED原理方面的最新资料整理如下,但是贴不上图,希望对你有所帮助:1、LED发光机理:PN结的端电压构成一定势垒,当加正向偏置电压时势垒下降,P区和N区的多数载流子向对方扩散。
由于电子迁移率比空穴迁移率大得多,所以会出现大量电子向P区扩散,构成对P区少数载流子的注入。这些电子与价带上的空穴复合,复合时得到的能量以光能的形式释放出去。
这就是PN结发光的原理。2、LED发光效率:一般称为组件的外部量子效率,其为组件的内部量子效率与组件的取出效率的乘积。
所谓组件的内部量子效率,其实就是组件本身的电光转换效率,主要与组件本身的特性(如组件材料的能带、缺陷、杂质)、组件的垒晶组成及结构等相关。而组件的取出效率则指的是组件内部产生的光子,在经过组件本身的吸收、折射、反射后,实际在组件外部可测量到的光子数目。
因此,关于取出效率的因素包括了组件材料本身的吸收、组件的几何结构、组件及封装材料的折射率差及组件结构的散射特性等。而组件的内部量子效率与组件的取出效率的乘积,就是整个组件的发光效果,也就是组件的外部量子效率。
早期组件发展集中在提高其内部量子效率,主要方法是通过提高垒晶的质量及改变垒晶的结构,使电能不易转换成热能,进而间接提高LED的发光效率,从而可获得70%左右的理论内部量子效率,但是这样的内部量子效率几乎已经接近理论上的极限。在这样的状况下,光靠提高组件的内部量子效率是不可能提高组件的总光量的,因此提高组件的取出效率便成为重要的研究课题。
目前的方法主要是:晶粒外型的改变——TIP结构,表面粗化技术。3、LED电气特性:电流控制型器件,负载特性类似PN结的UI曲线,正向导通电压的极小变化会引起正向电流的很大变化(指数级别),反向漏电流很小,有反向击穿电压。
在实际使用中,应选择 。LED正向电压随温度升高而变小,具有负温度系数。
LED消耗功率 ,一部分转化为光能,这是我们需要的。剩下的就转化为热能,使结温升高。
散发的热量(功率)可表示为 。4、LED光学特性:LED提供的是半宽度很大的单色光,由于半导体的能隙随温度的上升而减小,因此它所发射的峰值波长随温度的上升而增长,即光谱红移,温度系数为+2~3A/ 。
LED发光亮度L与正向电流 近似成比例: ,K为比例系数。电流增大,发光亮度也近似增大。
另外发光亮度也与环境温度有关,环境温度高时,复合效率下降,发光强度减小。5、LED热学特性:小电流下,LED温升不明显。
若环境温度较高,LED的主波长就会红移,亮度会下降,发光均匀性、一致性变差。尤其点阵、大显示屏的温升对LED的可靠性、稳定性影响更为显著。
所以散热设计很关键。6、LED寿命:LED的长时间工作会光衰引起老化,尤其对大功率LED来说,光衰问题更加严重。
在衡量LED的寿命时,仅仅以灯的损坏来作为LED寿命的终点是远远不够的,应该以LED的光衰减百分比来规定LED的寿命,比如35%,这样更有意义。7、大功率LED封装:主要考虑散热和出光。
散热方面,用铜基热衬,再连接到铝基散热器上,晶粒与热衬之间以锡片焊作为连接,这种散热方式效果较好,性价比较高。出光方面,采用芯片倒装技术,并在底面和侧面增加反射面反射出浪费的光能,这样可以获得更多的有消出光。
8、白光LED:类自然光谱白光LED主要有三种:第一种是比较成熟且已商业化的蓝光芯片+黄色荧光粉来获得白光,这种白光成本最低,但是蓝光晶粒发光波长的偏移、强度的变化及荧光粉涂布厚度的改变均会影响白光的均匀度,而且光谱呈带状较窄,色彩不全,色温偏高,显色性偏低,灯光对眼睛不柔和不协调。人眼经过进化最适应的是太阳光,白炽灯的连续光谱是最好的,色温为2500K,显色指数为100。
所以这种白光还需要改进,比如加多发光过程来改善光谱,使之连续且足够宽。第二种是紫外光或紫光芯片+红、蓝、绿三基色荧光粉来获得白光,发光原理类似于日光灯,该方法显色性更好,而且UV-LED不参与白光的配色,所以UV-LED波长与强度的波动对于配出的白光而言不会特别地敏感,并可由各色荧光粉的选择和配比,调制出可接受色温及演色性的白光。
但同样存在所用荧光粉有效转化效率低,尤其是红色荧光粉的效率需要大幅度提高的问题。这类荧光粉发光稳定性差、光衰较大、配合荧光粉紫外光波长的选择、UV-LED制作的难度及抗UV封装材料的开发也是需要克服的困难。
第三种是利用三基色原理将RGB三种超高亮度LED混合成白光,该方法的优点是不需经过荧光粉的转换而直接配出白光,除了可避免荧光粉转换的损失而得到较佳的发光效率外,更可以分开控制红、绿、蓝光LED的发光强度,达成全彩的变色效果(可变色温),并可由LED波长及强度的选择得到较佳的演色性。但这种办法的问题是绿光的转换效率低,混光困难,驱动电路设计复。
3.LED灯电路工作原理及修理
LED灯工作原理
LED灯是一块电致发光的半导体材料芯片,用银胶或白胶固化到支架上,然后用银线或金线连接芯片和电路板,四周用环氧树脂密封,起到保护内部芯线的作用,最后安装外壳,所以 LED 灯的抗震性能好。
原理
LED(Light Emitting Diode),发光二极管,是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。
半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N结。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED灯发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。
LED可以直接发出红、黄、蓝、绿、青、橙、紫、白色的光。[1]
最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光视效能的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。汽车信号灯也是LED光源应用的重要领域。
对于一般照明而言,人们更需要白色的光源。1998年发白光的LED开发成功。这种LED是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含Ce3+的YAG荧光粉受此蓝光激发后发出黄色光射,峰值550nLED灯m。蓝光LED基片安装在碗形反射腔中,覆盖以混有YAG的树脂薄层,约200-500nm。 LED基片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧光粉发出的黄光混合,可以得到白光。
对于InGaN/YAG白色LED,通过改变YAG荧光粉的化学组成和调节荧光粉层的厚度,可以获得色温3500-10000K的各色白光。这种通过蓝光LED得到白光的方法,构造简单、成本低廉、技术成熟度高,因此运用最多。
4.光控照明电路论文
引言 随着电子技术的发展,尤其是数字技术的发展,用数字电路技术实现灯的自动发亮、节能节电、延长灯的寿命变得越来越重要,而且贴近我们的实际生活。
声光控电路已成为人们日常生活中必不可少的必需品,它不需要开关,声光控延时开关可在白天关闭电灯,晚上人来有声音时自动开灯,延时一分钟自动熄灭,真正做到了人来灯亮,人走灯灭,这种开关有许多优点,一是省电,由于灯泡大部分时间不工作,因此节电效率很高,达80%左右;二是方便,首先,不用接触,全自动智能控制,另外,接线简单、安装方便,不用更改原照明电路;三是省灯泡,正常情况下,一只灯泡可使用两年左右。另外,是在一定场所使用还可起防盗作用,因此我花了一个星期时间设计了以下几种方案 2.1方案一 分立元件声光控楼梯延迟开关电路 本方案介绍的声光控延时照明电路,在白天不工作,在夜间有人在楼梯上走动时,脚步声就会使电子开关动作,电灯点亮,人走后即无声响30s三后电灯会自动熄灭,节能实用,且具有较高的声控灵敏度。
VD3~VD6组成桥式整流电路,经R8降压限流,VS稳压,C3滤波输出约9V直流电压供三极管VT1~VT4用电。白天光敏电阻RL呈低电阻,VT3导通,VT4截止。
此时C4上无电压,VT5截止,VT6导通,晶闸管VT7的门极于阴极被VT6短接,VT7关断,电灯E不亮。晚上,RL无光照射,呈高电阻,但由于R2的偏置作用使VT1导通,VT1发射极电流流入VT3基极,使VT3仍处于导通状态,所以在安静状态时,电灯仍不会被点亮。
当楼梯上有人走路,其脚步声或谈话声经话筒B拾取后,就输出相应电信号经C1送至VT1放大。放大后音频信号一方面由VT1发射极注入到VT3的基极,另一方面由VT1集电极输出,经C2耦合到VT2的基极,该信号经VT2放大由其集电极输出再次送入到VT1基极。
由此可见,VT1与VT2组成正反馈式音频放大器,它具有极高的电路增益,因而使电路有很高的声控灵敏度,这就是本电路设计的巧妙所在。由于VT3基极有很强的音频输入,其信号的负半周使VT3退出导通态,进入放大态甚至截止态。
VT3集电极电位上升,VT4导通,9V直流电压经VT4、VD2向C4迅速充电,并经R9使VT5导通、VT6截止,解除对晶闸管VT7门极的封锁。VT7门极由R11获得正向触发电流,VT7开通,电灯就点亮发光。
电灯点亮后,自身光线虽然使RL变成低电阻,使VT3导通封锁,但由于C4已经充满了 /dfjsjlw/电荷,C4通过R9向VT5发射结放电,使VT5仍能保持导通态,所以电灯能继续点亮。当C4放电完毕,VT5截止,VT6导通,VT7关断,电灯熄灭。
如果再次有声响,电灯又能点亮。电路的延迟时间主要由R9、C4的放电时间常数决定,图示数据约为30S。
白天,因VT3封锁,再大的声响都不会使电灯点亮。 VT1、VT3要求放大倍数β值大于200,其他三极管值以100左右为宜。
VT5、VT6的βVceo要求尽可能高一些。驻极体电容话筒B最好选稳定性较好的带白点色标的那种。
其他元器件参数见图,无特殊要求。 2.2方案二 数字电路声光控楼梯延迟开关电路 本方案是一个采用CD4011数字集成电路制作的声、光控楼梯走道延迟照明开关,它除了具备前面介绍的分立元件电路所有特点外,它的延迟精度高,工作可靠性高,各成品之间性能离散性小,因此非常适宜工厂大规模生产。
图中,晶闸管VT2构成延迟灯开关的主回路,控制回路由2——输入端四与非门CD4011数字集成电路构成。CD4011中与非门Ⅰ组成线性放大器,用来放大话筒B输入的音频信号。
与非门Ⅱ组成光控开关,与非门Ⅲ、Ⅳ组成单稳态电路。与非门的逻辑功能是:“见0出1,全1为0”。
白天光敏电阻RL受光照射呈低电阻,使与非门Ⅱ一个输入端⒀脚为低电平“0”,输出端⑾脚为高电平“1”,故⑼脚也为“1”。与非门Ⅳ两个输入端⑸、⑹脚因R10接地为低电平“0”,所以输出⑷脚为“1”,⑻脚也为“1”。
与非门Ⅲ两个输入端都为“1”,输出端⑽脚为“0”,电容C5两端都为低电平无法充电,而三极管VT1接地而关断,电灯不亮。由于⒀脚为低电平“0”,所以不管其⑿脚电平如何变化,电子开关均被封死,电灯不可能被点亮。
晚上,光敏电阻RL无光照射呈高电阻,其阻值远大于R8,所以⒀脚为高电平“1”,这就为开灯提供了条件,但输出端⑾脚的电平高低还要看⑿脚电平的情况。当有人走动的时候,B收取声音信号经C2耦合到与非门Ⅰ进行放大,然后经R6向C4充电(充电时间常数极小),使⑿脚也变为高电平“1”,根据与非门“全1为0”的逻辑关系,⑾脚输出低电平“0”,⑼脚也为“0”。
由“见0出1”可知⑽脚为“1”即⑽脚输出高电平,经R10向C5充电。根据电容两端电压不能突变的原理,⑸、⑹两脚为“1”,故输出端⑷脚为低电平“0”,VT1截止,晶闸管VT2的门极通过VD1和R1获得正向触发电流而开通,电灯E通电发光。
约经30S左右,C5充电完毕,⑸、⑹两脚恢复低电平“0”,⑷脚输出高电平“1”,VT1导通,VT2失去触发电流,当交流电过零时即关断,电灯熄灭。在稳态时,⑽脚为低电平“0”,C5可通过R10放电,为下次开灯作延迟准。