1.分析标准粒子群算法的不足及改进的方法
一个以上的目标,以优化相对传统的多目标优化方法在解决多目标问题,PSO具有很大的优势。
首先,PSO算法和高效的搜索功能,有利于在这个意义上,多目标的最优解;其次,PSO代表了整个解决方案的人口集固有的并行性,同时搜索多个非劣解,所以容易搜索多个Pareto最佳的解决方案;此外,PSO通用的适合处理所有类型的目标函数和约束条件,PSO容易与传统相结合的方法,和然后提出了有效的方法来解决一个具体的问题。 PSO本身,为了更好地解决多目标优化问题,必须解决的问题的全局最优粒子和个人选择的最优粒子。
为全局最优粒子的选择,一方面,该算法具有更好的收敛速度,另一方面帕累托边界分散体的溶液中。如果在最佳的单个颗粒的选择,需要较少的计算复杂性,并且是仅由较少数量的比较非劣解更新。
迄今为止,基于PSO的多目标优化,主要有以下思路:(1)向量法和加权方法。文献[20]的固定权重法,自适应权重法和向量评估方法的第一次,PSO解决MO问题。
然而,对于一个给定的优化问题,权重的方法通常是很难获得一组合适的权重向量评价方法MO的问题是,往往无法得到满意的解决方案。 (2)基于Pareto方法。
[21]帕累托排序机制和PSO相结合,处理的问题,多目标优化,Pareto排序方法来选择一组的精英,和轮盘赌选择全局最优粒子。虽然轮盘赌选择机制,使所有的帕累托个人选择的概率是一样的,但实际上只有少数人的选择的概率就越大,因此不利于保持种群多样性;文献[22]通过引入在PSO帕累托竞争机制,选择全局最优粒子的颗粒知识基础。
候选个人随机选自人口比较集进行比较,以确定非劣解,该算法的成功取决于比较集的大小的参数设置。如果这个参数是太小了,选择的过程,从人口的非劣效性个人可能是太小了,如果这个参数是太大,它可能会出现过早收敛。
(3)距离的方法。 [23],被分配的各个的当前的解决方案之间的距离的基础上Pa2reto的解决方案,其适应值,以便选择全局最优粒子。
随着距离的方法需要被初始化潜在的解决方案,如果初始电位值太大,不同的解决方案,以适应不同的值并不显着。这将导致在选择压力太小或个别均匀分布,导致在PSO算法收敛速度非常慢。
(4)附近的“。文献[24]提出了动态邻域的选择策略,为优化目标的定义,目标,和其他所有的目标定义的目标附近,然后选择全局最优粒子的动态邻域的策略,但该方法更敏感的目标函数的优化目标选择和附近的排序。
(5)多组法。文献[25]的人口划分成多个子群,以及每个子群PSO算法,通过搜索Pareto最优解的各种子群之间的信息交流。
然而,由于需要增加的粒子的数量增加的计算量。 (6)非排名的方法。
[26]使用非主导的排序选择全局最优的粒子。整个人口,粒子的个人最好成绩粒子和它的后代,有利于提供一个适当的选择压力,小生境技术,以增加种群多样性。
比较所有粒子的个人最好成绩颗粒在整个人群遗传给后代,但是,由于其本身的性质是不利于人口的多样性,容易形成早熟。此外,文献[27]最大最小策略,博弈论引入PSO解决多MO。
最大最小策略,以确定粒子的适应值,可以判断帕累托最优的解决方案,而不需要集群和小生境技术。 2约束优化在最近几年也取得了一些进展,PSO算法在约束最优化。
基于PSO-的约束优化工作分为两种类型:①罚函数法;②设计特定的进化操作或约束修正系数。 [28]采用罚函数法,采用非固定多段映射罚函数将约束的优化问题,然后利用PSO解决问题的转换后,模拟结果表明,该算法相对进化策略和遗传算法的优势,但罚函数的设计过于复杂,不利于解决;文献[29],一个可行的解决方案,保留策略处理约束,即,一方面要更新所有的颗粒的存储区域中到只保留可行的解决方案,在另一方面在初始化阶段的所有的颗粒从一个可行的解决方案的空间值?初始的可行的解决方案空间,然而,是难以确定的很多问题,文献[30 ]提出的多层信息共享策略粒子群与约束原则来处理,根据约束矩阵多层Pareto排序机制的微粒,从而一些微粒,以确定个人的搜索方向的其余。
3离散优化为离散优化解决方案空间是离散点的集合,而不是连续PSO解决离散优化问题,必须予以纠??正的速度和位置更新公式,或变形。基于PSO的离散优化可分为以下三类:速度(1)的位置变化的概率。
[31]首先提出了离散二进制PSO。二进制粒子的位置编码器,Sigmoid函数,速度约束在[0,1],代表粒子的概率立场;法[32] [31]在文献提高的地址更换安排。
安排更换颗粒,速度是指根据两个粒子的相似性,以确定粒子的位置变化也引入突变操作,以防止陷入局部极小的最优粒子的概率。 (2)重新定义的PSO的操作。
[33]通过重新定义粒子的位置,速度,和他们的加法和减法乘法运算,提出了一种新的离散粒子群,并为解决旅行商问题。虽然该算法是有效的,但它提供了一种新的思维方式求解组合优化问题。
(3)连续PSO离散的情况下。 [34]采用连续PSO,解决分布式计算机任务的分配问题。
于实数被转换为一个正整数,和符号的实数部分和小数部分的分除去。结果表明,在溶液中的质量和速度的方法的算法是优。
2.微粒群算法的改进方法
1 多目标优化 相对传统多目标优化方法, PSO在求解多目标问题上具有很大优势。
首先, PSO的高效搜索能力有利于得到多目标意义下的最优解;其次, PSO通过代表整个解集的种群按内在的并行方式同时搜索多个非劣解,因此容易搜索到多个Pareto 最优解; 再则, PSO的通用性使其适合于处理所有类型的目标函数和约束;另外, PSO 很容易与传统方法相结合,进而提出解决特定问题的高效方法。就PSO 本身而言,为了更好地解决多目标优化问题,必须解决全局最优粒子和个体最优粒子的选择问题。
对于全局最优粒子的选择,一方面要求算法具有较好的收敛速度,另一方面要求所得解在Pareto边界上具有一定的分散性。对于个体最优粒子的选择,则要求较小的计算复杂性,即仅通过较少的比较次数达到非 劣解的更新。
迄今,基于PSO的多目标优化主要有以下几种 思路: (1)向量法和权重法。文献[ 20 ]利用固定权重法、适应性权重法和向量评价法,首次将PSO 用于解决MO问题。
然而对于给定的优化问题,权重法通常很难获得一组合适的权重,而向量评价法往往无法给出MO问题的满意解。 (2)基于Pareto的方法。
文献[ 21 ]将Pareto排序机制和PSO相结合来处理多目标优化问题,通过Pareto排序法选择一组精英解,并采用轮盘赌方式从中选择全局最优粒子。尽管轮盘赌选择机制设计的目的是使所有Pareto个体的选择概率相同,但是实际上只有少数个体得到较大的选择概率,因此不利于维持种群的多样性;文献[ 22 ]通过在PSO中引入Pareto竞争机制和微粒知识库来选择全局最优粒子。
由于非劣解是将候选个体与从种群中随机选出的比较集进行比较来确定的,因此该算法成功与否就取决于比较集规模参数的设定。如果这个参数太小,该过程从种群中选出的非劣个体可能过少;如果这个参数太大,则可能发生早熟收敛现象。
(3)距离法。文献[ 23 ]根据个体当前解与Pa2reto解之间的距离来分配其适应值,从而选择全局最优粒子。
由于距离法需要初始化潜在解,如果初始潜在值太大,不同解的适应值的差别则不明显。这将导致选择压力过小或个体均匀分布,从而导致PSO算法收敛非常缓慢。
(4)邻域法。文献[ 24 ]提出一种基于动态邻域的选择策略,将一个目标定义为优化目标,而将其它所有目标定义为邻域目标,进而提出了选择全局最优粒子的动态邻域策略,但该方法对优化目标的选择以及邻域目标函数的排序较敏感。
(5)多种群法。文献[ 25 ]将种群分为多个子种群,每个子种群单独进行PSO 运算,各个子种群之间通过信息交换来搜索Pareto最优解。
但是由于需要增加微粒数目而增加了计算量。 (6)非优势排序法。
文献[ 26 ]利用非优势排序的方法选择全局最优粒子。该方法在整个种群中,比较微粒的个体最优粒子与其后代,有利于提供合适的选择压力,同时使用小生境技术提高种群多样性。
然而在整个种群中比较所有微粒的个体最优粒子与其后代,其本质不利于种群多样性,容易形成早熟。另外,文献[ 27 ]将博弈理论中的Maximin策略引入PSO来解决多MO问题。
利用Maximin策略确定微粒的适应值可以很好地确定Pareto最优解而不需要聚类和小生境技术。 2 约束优化 近年来, PSO算法在约束优化方面也取得了一定进展。
基于PSO的约束优化工作主要分为两类: ①罚函数法; ②设计特定的进化操作或约束修正因子。文献[ 28 ]采用罚函数法,利用非固定多段映射罚函数对约束优化问题进行转化,再利用PSO求解转化后的问题,仿真结果显示PSO相对进化策略和遗传算法有优越性,但其罚函数的设计过于复杂,不利于求解;文献[ 29 ]采用可行解保留策略处理约束,即一方面更新存储区时所有粒子仅保留可行的解,另一方面在初始化阶段所有粒子均从可行解空间取值,然而初始可行解空间对于许多问题是很难确定的;文献[ 30 ]提出了具有多层信息共享策略的微粒群原理来处理约束,根据约束矩阵采用多层Pareto排序机制来产生优良粒子,进而用一些优良的粒子来决定其余个体的搜索方向。
3 离散优化对于离散优化而言,解空间是离散点的集合,而非连续区域,因此利用PSO解决离散优化问题就必须修正速度和位置更新公式,或者是对问题进行变形。目前,基于PSO的离散优化工作可分为如下三类: (1)将速度作为位置变化的概率。
文献[ 31 ]首次提出了离散二值PSO。其微粒位置编码采用二进制方式,通过采用Sigmoid函数将速度约束于[ 0, 1 ]区间,来代表微粒位置取1的概率;文献[ 32 ]对文献 [ 31 ]中的方法进行改进,用于解决置换排列问题。
其中微粒用置换排列表示,而速度则根据两个粒子的相似度来定义,决定微粒位置变化的概率,同时还引入变异操作防止最优粒子陷入局部极小。 (2)重新定义PSO操作。
文献[ 33 ]通过重新定义微粒的位置、速度、以及它们之间的加减乘操作,提出一种新的离散PSO,并用于求解旅行商问题。尽管该算法的效果较差,但是提供了一种解决组合优化问题的新的思路。
(3)直接将连续PSO用于离散情况。文献[ 34 ]利用连续PSO 解决分布式计算机任务分配问题。
为了将实数转化为正整数,把实数的符号和小数部 分去掉。结果表明。
3.微粒群算法的改进方法
1 多目标优化 相对传统多目标优化方法, PSO在求解多目标问题上具有很大优势。
首先, PSO的高效搜索能力有利于得到多目标意义下的最优解;其次, PSO通过代表整个解集的种群按内在的并行方式同时搜索多个非劣解,因此容易搜索到多个Pareto 最优解; 再则, PSO的通用性使其适合于处理所有类型的目标函数和约束;另外, PSO 很容易与传统方法相结合,进而提出解决特定问题的高效方法。就PSO 本身而言,为了更好地解决多目标优化问题,必须解决全局最优粒子和个体最优粒子的选择问题。
对于全局最优粒子的选择,一方面要求算法具有较好的收敛速度,另一方面要求所得解在Pareto边界上具有一定的分散性。对于个体最优粒子的选择,则要求较小的计算复杂性,即仅通过较少的比较次数达到非 劣解的更新。
迄今,基于PSO的多目标优化主要有以下几种 思路: (1)向量法和权重法。文献[ 20 ]利用固定权重法、适应性权重法和向量评价法,首次将PSO 用于解决MO问题。
然而对于给定的优化问题,权重法通常很难获得一组合适的权重,而向量评价法往往无法给出MO问题的满意解。 (2)基于Pareto的方法。
文献[ 21 ]将Pareto排序机制和PSO相结合来处理多目标优化问题,通过Pareto排序法选择一组精英解,并采用轮盘赌方式从中选择全局最优粒子。尽管轮盘赌选择机制设计的目的是使所有Pareto个体的选择概率相同,但是实际上只有少数个体得到较大的选择概率,因此不利于维持种群的多样性;文献[ 22 ]通过在PSO中引入Pareto竞争机制和微粒知识库来选择全局最优粒子。
由于非劣解是将候选个体与从种群中随机选出的比较集进行比较来确定的,因此该算法成功与否就取决于比较集规模参数的设定。如果这个参数太小,该过程从种群中选出的非劣个体可能过少;如果这个参数太大,则可能发生早熟收敛现象。
(3)距离法。文献[ 23 ]根据个体当前解与Pa2reto解之间的距离来分配其适应值,从而选择全局最优粒子。
由于距离法需要初始化潜在解,如果初始潜在值太大,不同解的适应值的差别则不明显。这将导致选择压力过小或个体均匀分布,从而导致PSO算法收敛非常缓慢。
(4)邻域法。文献[ 24 ]提出一种基于动态邻域的选择策略,将一个目标定义为优化目标,而将其它所有目标定义为邻域目标,进而提出了选择全局最优粒子的动态邻域策略,但该方法对优化目标的选择以及邻域目标函数的排序较敏感。
(5)多种群法。文献[ 25 ]将种群分为多个子种群,每个子种群单独进行PSO 运算,各个子种群之间通过信息交换来搜索Pareto最优解。
但是由于需要增加微粒数目而增加了计算量。 (6)非优势排序法。
文献[ 26 ]利用非优势排序的方法选择全局最优粒子。该方法在整个种群中,比较微粒的个体最优粒子与其后代,有利于提供合适的选择压力,同时使用小生境技术提高种群多样性。
然而在整个种群中比较所有微粒的个体最优粒子与其后代,其本质不利于种群多样性,容易形成早熟。另外,文献[ 27 ]将博弈理论中的Maximin策略引入PSO来解决多MO问题。
利用Maximin策略确定微粒的适应值可以很好地确定Pareto最优解而不需要聚类和小生境技术。 2 约束优化 近年来, PSO算法在约束优化方面也取得了一定进展。
基于PSO的约束优化工作主要分为两类: ①罚函数法; ②设计特定的进化操作或约束修正因子。文献[ 28 ]采用罚函数法,利用非固定多段映射罚函数对约束优化问题进行转化,再利用PSO求解转化后的问题,仿真结果显示PSO相对进化策略和遗传算法有优越性,但其罚函数的设计过于复杂,不利于求解;文献[ 29 ]采用可行解保留策略处理约束,即一方面更新存储区时所有粒子仅保留可行的解,另一方面在初始化阶段所有粒子均从可行解空间取值,然而初始可行解空间对于许多问题是很难确定的;文献[ 30 ]提出了具有多层信息共享策略的微粒群原理来处理约束,根据约束矩阵采用多层Pareto排序机制来产生优良粒子,进而用一些优良的粒子来决定其余个体的搜索方向。
3 离散优化对于离散优化而言,解空间是离散点的集合,而非连续区域,因此利用PSO解决离散优化问题就必须修正速度和位置更新公式,或者是对问题进行变形。目前,基于PSO的离散优化工作可分为如下三类: (1)将速度作为位置变化的概率。
文献[ 31 ]首次提出了离散二值PSO。其微粒位置编码采用二进制方式,通过采用Sigmoid函数将速度约束于[ 0, 1 ]区间,来代表微粒位置取1的概率;文献[ 32 ]对文献 [ 31 ]中的方法进行改进,用于解决置换排列问题。
其中微粒用置换排列表示,而速度则根据两个粒子的相似度来定义,决定微粒位置变化的概率,同时还引入变异操作防止最优粒子陷入局部极小。 (2)重新定义PSO操作。
文献[ 33 ]通过重新定义微粒的位置、速度、以及它们之间的加减乘操作,提出一种新的离散PSO,并用于求解旅行商问题。尽管该算法的效果较差,但是提供了一种解决组合优化问题的新的思路。
(3)直接将连续PSO用于离散情况。文献[ 34 ]利用连续PSO 解决分布式计算机任务分配问题。
为了将实数转化为正整数,把实数的符号和小数。
4.我要写一篇关于粒子群最优化算法(PSO)的论文,还需要一个关于这
摘自:人工智能论坛 1。
引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。
系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。
而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2。 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。
人工生命包括两方面的内容 1。 研究如何利用计算技术研究生物现象 2。
研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容。 现在已经有很多源于生物现象的计算技巧。
例如, 人工神经网络是简化的大脑模型。 遗传算法是模拟基因进化过程的。
现在我们讨论另一种生物系统- 社会系统。 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为。
也可称做"群智能"(swarm intelligence)。 这些模拟系统利用局部信息从而可能产生不可预测的群体行为 例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计。
在计算智能(computational intelligence)领域有两种基于群智能的算法。 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。
前者是对蚂蚁群落食物采集过程的模拟。 已经成功运用在很多离散优化问题上。
粒子群优化算法(PSO) 也是起源对简单社会系统的模拟。 最初设想是模拟鸟群觅食的过程。
但后来发现PSO是一种很好的优化工具。 3。
算法介绍 如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。
在这个区域里只有一块食物。所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。 那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。
所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。 然后粒子们就追随当前的最优粒子在解空间中搜索 PSO 初始化为一群随机粒子(随机解)。
然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。
第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest。
另一个极值是整个种群目前找到的最优解。 这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, persent[] 是当前粒子的位置。
pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数。 c1, c2 是学习因子。
通常 c1 = c2 = 2。 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax 4。
遗传算法和 PSO 的比较 大多数演化计算技术都是用同样的过程 1。 种群随机初始化 2。
对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关 3。
种群根据适应值进行复制 4。 如果终止条件满足的话,就停止,否则转步骤2 从以上步骤,我们可以看到PSO和GA有很多共同之处。
两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解 但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation)。
而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。
与遗传算法比较, PSO 的信息共享机制是很不同的。 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。
在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子, 这是单向的信息流动。 整个搜索更新过程是跟随当前最优解的过程。
与遗传。
5.粒子群算法PSO写论文,有没有哪些创新点可以加进去
粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来发展起来的一种新的进化算法(Evolutionary Algorithm - EA)。
PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"变异"(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。
粒子群算法是一种并行算法。
转载请注明出处众文网 » 毕业设计(论文)粒子群算法的改进(分析标准粒子群算法的不足及改进的方法)