1.固体酸的简介
固体酸催化剂
[编辑本段]基本概念
酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。
[编辑本段]性质
与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。
①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成:
红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。
SiO2-Al2O3的酸中心模型 (见图)有多种模式。
②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3<H0<+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。
[编辑本段]制造
固体酸催化剂种类繁多,制造方法各异。举例如下:①天然粘土催化剂的制造。早期用天然粘土制造石油催化裂化催化剂,是将粘土用酸处理,然后水洗、干燥制成。酸处理的作用是除去金属杂质离子,暴露硅-铝骨架结构,并用氢离子替代原有的钠、钙等阳离子。②合成的混合氧化物的制造。最有代表性的是石油催化裂化用的无定形硅酸铝催化剂,可用分步沉淀法、共沉淀法或混合法制造。工业生产多用分步沉淀法,在水玻璃溶液中加入H2SO4制成SiO2水凝胶浆料,经老化制成适于充当催化剂骨架的凝胶结构。然后在浆料中加Al2(SO4)3溶液,再用氨水使铝沉积于SiO2水凝胶上。过滤,滤饼加水制成浆液,喷雾干燥成微球,然后反复洗涤除去Na2SO4等杂质,最后干燥。③分子筛催化剂的制造。在无定形硅-铝胶浆液中掺入稀土交换后的Y型分子筛,喷雾干燥、洗涤、再干燥即得分子筛裂化催化剂(见分子筛催化剂)。④半合成催化剂的制造。在上述分子筛催化剂上,加入一部分高岭土与硅铝凝胶作载体,制成的催化剂,称为半合成催化剂。近年来改用硅溶胶、铝溶胶作为粘结剂,将稀土-Y型分子筛、高岭土粘结制成了新一代的半合成裂化催化剂。⑤润载型固体酸催化剂的制造。将H3PO4水溶液与硅藻土混合、干燥、磨粉、混捏、干燥后制得成品,可用于苯的烷基化制乙苯、异丙苯,亦可用于烯烃的叠合、水合等。
2.固体超强酸催化剂用于烷基化,异构化,重排,裂解反应.或其中一种反
1.固体超强酸催化制备丙烯酸十八酯 【刊名】 云南大学学报(自然科学版), 编辑部邮箱 2006年 01期 【作者】 刘祥义 徐晓军 杨宇明 【机构】 云南昆明 西南林学院 昆明理工大学环境科学与工程学院 【关键词】 丙烯酸 十八醇 丙烯酸十八酯 固体超强酸 酯化 【英文关键词】 acrylic acid octadecyl alcohol octadecyl acrylate solid super acid melt esterification 【中英文摘要】 以丙烯酸和十八碳醇为原料,采用固体超强酸SO42-/TiO2为催化剂及直接酯化法制备丙烯酸十八酯.研究了丙烯酸与十八醇的摩尔比、催化剂和阻聚剂的质量分数、反应温度及反应时间对反应的影响,并用红外光谱对产物进行了表征.由实验得出的最佳合成条件是:丙烯酸与十八醇的摩尔比为1.2∶1,固体超强酸及对苯二酚的质量分数分别为6%,0.8%,反应温度为120℃,反应时间为3 h,在此反应条件下,酯的产率可达97%. 2.固体超强酸SO_4~(2-)/TiO_2催化合成亚油酸乙酯 【刊名】 精细化工, 编辑部邮箱 2005年 01期 【作者】 吴伟 刘一夫 何剑镔 马方伟 郑文涛 张密林 【机构】 黑龙江大学化学化工与材料学院 黑龙江哈尔滨 黑龙江哈尔滨 150080哈尔滨工程大学化工学院黑龙江哈尔滨 哈尔滨工程大学化工学院 【关键词】 固体超强酸 亚油酸 亚油酸乙酯 酯化 【英文关键词】 solid super acid linoleic acid ethyl linoleate esterification 【中英文摘要】 用两相滴定沉淀法制备了SO2-4/TiO2固体超强酸催化剂,得到了适合亚油酸酯化的催化剂制备工艺条件:硫酸浸渍浓度0 75mol/L,浸渍时间4h,焙烧温度450℃,焙烧时间4h。
首次将该催化剂用于亚油酸的酯化反应催化合成亚油酸乙酯,考察了物料比、反应时间、催化剂用量对亚油酸与乙醇酯化反应的影响规律,最佳反应条件为:n(无水乙醇)/n(亚油酸)=4,w(催化剂)=3%(相对于亚油酸),反应时间8h,亚油酸转化率可达93%。3.固体超强酸催化剂的研究进展 【刊名】 辽宁化工, 编辑部邮箱 2005年 01期 【作者】 周治峰 【机构】 辽宁省石油化学工业技术经济信息中心 辽宁沈阳 【关键词】 固体超强酸 酯化反应 缩醛反应 【英文关键词】 Solid super acid Esterification reaction Ketal reaction 【中英文摘要】 介绍了固体超强酸催化剂的特点和制备方法,讨论了固体超强酸催化剂对缩醛(酮)反应、酯化反应等反应催化作用,展望了固体超强酸催化剂的研发趋势。
4. 固体超强酸S_2O_8~(2-)/TiO_2-ZrO_2催化合成柠檬酸三丁酯 【刊名】 应用化工, 编辑部邮箱 2005年 01期 【作者】 汪显阳 【机构】 安徽医科大学化学教研室 安徽合肥 【关键词】 固体超强酸 S2O82-/TiO2ZrO2 柠檬酸三丁酯 催化剂 酯化 【英文关键词】 solid superacid S_2O_8~(2-)/TiO_2-ZrO_2 tributyl citrate catalyst esterification 【中英文摘要】 以固体超强酸S2O82-/TiO2 ZrO2为催化剂合成了柠檬酸三丁酯,考察了催化剂制备条件对催化活性的影响,以及酸醇摩尔比、反应时间、催化剂用量诸因素对酯化率的影响。实验表明:S2O82-/TiO2 ZrO2具有良好的催化活性。
在0.5mol/L(NH4)2S2O8溶液中浸渍TiO2 ZrO2,过滤后于500℃下焙烧3h,得到的催化剂活性最高;当酸醇摩尔比为1∶4,反应时间为3h,催化剂用量为反应物总量的1.5%时,酯化率可达98.5%以上。5. 邻二甲苯和苯乙烯在WO_3/ZrO_2固体超强酸的烷基化反应 【刊名】 石油化工高等学校学报, 编辑部邮箱 2005年 01期 【作者】 任立国 赵崇峰 高文艺 【机构】 辽宁石油化工大学石油化工学院 辽宁抚顺 【关键词】 固体超强酸 烷基化 1-苯基-1-(3 4-二甲基苯基)-乙烷 【英文关键词】 Solid superacid Alkylation PXE 【中英文摘要】 通过沉淀、老化、过滤、洗涤、干燥、浸渍、焙烧等过程,从ZrOCl2·8H2O和(NH4)6H2W12O40制备了WO3/ZrO2固体超强酸催化剂;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;研究了以邻二甲苯和苯乙烯制备1-苯基-1-(3,4-二甲基苯基)-乙烷(PXE)的烷基化反应,考察了催化剂的焙烧温度、WO3的负载量、反应温度、反应时间、催化剂用量对反应的影响以及催化剂稳定性。
结果表明,在750~850℃,WO3的负载量为5%~15%的WO3/ZrO2体系可以形成超强酸,其表面上同时存在Lewis酸中心和Bronsted酸中心,并且可以相互转化;WO3/ZrO2固体超强酸催化剂在苯乙烯和邻二甲苯的烷基化反应中表现出良好的催化性能和稳定性;该反应的最佳实验条件为:反应温度为100℃,n(邻二甲苯)/n(苯乙烯)=5.0,反应时间为5h,催化剂用量为2.0g。6. 固体超强酸催化合成己二酸二乙酯的研究 【刊名】 天津化工, 编辑部邮箱 2005年 01期 【作者】 王龙杰 卢泽勤 【机构】 广西桂林 广西师范大学化学化工学院 广西师范大学学报编辑部 【关键词】 己二酸二乙酯 TiO2-ZrO2/SO42-固体超强酸 催化 合成 【英文关键词】 diethyl adipate TiO2-ZrO2/SO42- solid superacid catalysis synthesis 【中英文摘要】 用复合型固体超强酸TiO2-ZrO2/SO42-作催化剂,催化合成了己二酸二乙酯。
考察了反应时间、原料配比、催化剂用量等对反应的影响,确定了酯化反应最佳反应条件,在此条件下。
3.大学实验室乙酸乙酯的制备的论文
关于乙酸乙酯的制备摘要:乙酸乙酯的合成方法很多,例如:可由乙酸或其衍生物与乙醇反应制取,也可由乙酸钠与卤乙烷反应来合成等。
其中最常用的方法是在酸催化下由乙酸和乙醇直接酯化法。关键词:乙酸 乙醇 浓硫酸 乙酸乙酯引言:乙酸乙酯又称醋酸乙酯。
纯净的乙酸乙酯是无色透明具有刺激性气味的液体,是一种用途广泛的精细化工产品,具有优异的溶解性、快干性,用途广泛,是一种非常重要的有机化工原料和极好的工业溶剂,被广泛用于醋酸纤维、乙基纤维、氯化橡胶、乙烯树脂、乙酸纤维树酯、合成橡胶、涂料及油漆等的生产过程中。其主要用途有:作为工业溶剂,用于涂料、粘合剂、乙基纤维素、人造革、油毡着色剂、人造纤维等产品中;作为粘合剂,用于印刷油墨、人造珍珠的生产;作为提取剂,用于医药、有机酸等产品的生产;作为香料原料,用于菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的主要原料。
我们所说的陈酒很好喝,就是因为酒中含有乙酸乙酯。乙酸乙酯具有果香味。
因为酒中含有少量乙酸,和乙醇进行反应生成乙酸乙酯。因为这是个可逆反应,所以要具有长时间,才会积累导致陈酒香气的乙酸乙酯。
一、实验原理酯化反应为可逆反应,提高产率的措施为:一方面加入过量的乙醇,另一方面在反应过程中不断蒸出生成的产物和水,促进平衡向生成酯的方向移动。温度应控制在110~120℃之间,不宜过高,因为乙醇和乙酸都易挥发。
这是一个可逆反应,生成的乙酸乙酯在同样的条件下又水解成乙酸和乙醇。为了获得较高产率的酯,通常采用增加酸或醇的用量以及不断移去产物中的酯或水的方法来进行。
本实验采用回流装置及使用过量的乙醇来增加酯的产率。反应完成后,没有反应完全的CH3COOH CH3CH2OH及反应中产生的H2O分别用饱和Na2CO3,饱和Cacl2及无水Na2SO4(固体)除去。
二、工艺流程投料→回流→蒸馏→洗涤→萃取→干燥→精馏→计算产率三、仪器与试剂 1、仪器:铁架台、圆底烧瓶、(带支管)蒸馏烧瓶、球形冷凝管、直形冷凝管、橡皮管、温度计、分液漏斗、小三角烧瓶、烧杯。2、试剂:冰醋酸、95%乙醇、饱和Na2CO3溶液、饱和Nacl溶液,固体无水Na2SO4、沸石、饱和Cacl2溶液。
四、实验步骤1、制备在50ml圆底烧瓶中加入19ml无水乙醇、12ml冰醋酸和2ml浓硫酸,加入几粒沸石,摇匀后,装上球形冷凝管,在电热套上小火加热,回流30min后停止加热,冷却后,取下球形冷凝管,装上蒸馏头,将仪器改装成普通的整流装置,加热蒸馏,至流出液体体积约为反应物总体积的1/2为止。2、纯化馏出液中含有乙酸乙酯及少量乙醇、乙醚、水和醋酸。
在摇动下,缓缓的加入饱和碳酸钠溶液约10ml,直至无二氧化碳气体溢出,然后移入分液漏斗中,充分振摇(注意及时放气),静止后,分去下层水相,酯层用10ml饱和食盐水洗涤后,在分别用10ml饱和氯化钙溶液洗涤两次,弃去下层液,酯层自漏洞上口倒入干燥的50ml锥形瓶中,用无水硫酸镁干燥30min。将干燥过的乙酸乙酯滤入干净的蒸馏瓶中,加入沸石后在电热套上进行蒸馏,收集73-78℃的馏分。
纯乙酸乙酯的沸点为77.06℃,折射率为1.3723。 1 2 3 4 乙醇(ml) 19 19 12 12 乙酸(ml) 12 12 19 12 浓硫酸(ml) 2 2 2 2 反应时间(min) 45 30 30 30 五、实验装置六、实验结果乙醇(ml) 19 19 12 12 乙酸(ml) 12 12 19 12 反应时间(min) 45 30 30 30 乙酸乙酯(ml) 11.30 13.03 12.07 9.43 产率(%) 52.87 60.96 60.01 44.12 折光率 1.3702 1.3730 1.3732 1.4647 计算产率 产率=或产率=七、总结在酸催化法下乙醇、乙酸直接酯化制备乙酸乙酯的方法比较简单易行。
但是酯化反应为可逆反应,因此需要寻找更好的设计法案来提高产率。我们可以用以下措施提高产率:一方面加入过量的乙醇,另一方面在反应过程中不断蒸出生成的产物和水,促进平衡向生成酯的方向移动。
但是,酯和水或乙醇的共沸物沸点与乙醇接近,为了能蒸出生成的酯和水,又尽量使乙醇少蒸出来,可以采用了较长的分馏柱进行分馏。但由于实验室条件有限,实验中没有使用分馏柱,给实验留下不足。
4.固体酸催化剂的介绍
酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。
5.固体酸水解菊粉制备高果糖浆的原理是什么
尼龙可以被卤/锑或其它阻燃协同体系阻燃,也可以用红磷或三聚氰胺类的无卤阻燃体系来阻燃。
从量的角度来说,卤/锑协同体系仍然是使用最广泛的尼龙阻燃体系。在欧洲和亚洲的一些地区,人们正在致力于寻找卤素阻燃剂的替代品。
但通常说来这些替代体系一般都存在热稳定性低或吸潮等问题。对于红磷来说,还有储存的问题,因其本身为易燃品。
以下是尼龙中所使用的主要几种阻燃剂以及它们各自的优缺点。 (1)含卤阻燃体系:其中最重要的也是在国外应用最广的一种就是溴化苯乙烯聚合物,它具有极其优越的热稳定性,并且由于它与尼龙是熔融可混的,因而在加工过程中具有很好的流动性。
此外,用它制备的阻燃尼龙还具有优越的电性能和较好的物理机械性能。这种阻燃剂的局限性在于光稳定性较差且与尼龙尚不能完全相容。
另外其成本与目前国内应用较广的十溴联苯醚相比较高。另外一种在尼龙中应用了许多年的阻燃剂就是敌可燃,它是一种含氯的阻燃剂,具有较高的阻燃效率和电性能,但其在热稳定性方面的局限性使之仅适用于加工温度较低的尼龙阻燃体系。
目前在国内应用最广的阻燃剂就是十溴联笨醚,由于其较高的溴含量而对尼龙具有较高的阻燃效率,是最经济的一种阻燃剂。但由于它是一种填料型阻燃剂,因而对加工流动性及产品的物理机械性能有很大的负面影响。
此外,其热稳定性和光稳定性也教差。近几年来,人们开发的在尼龙阻燃方面使用的一种新阻燃剂为十溴二苯氧基乙烷,它与十溴联苯醚具有相同的溴含量和同样高的阻燃效率,且与溴化苯乙烯聚合物一样无(即所谓的二噁因)的问题。
此外,它还具有较好的热稳定性和光稳定性。其局限性在于它与十溴联苯醚一样同属填料型阻燃剂,与聚合物相容性较差,因而加工流动性和制品的物理机械性能较差。
此外与十溴联苯醚相比成本上升较高。 (2)无卤阻燃体系:尼龙中应用较广的无卤阻燃剂是红磷和三聚氰胺盐类。
红磷具有很高的阻燃效率并能改善制品的抗电弧性,但其储存及颜色方面的局限性大大限制了其在尼龙中的应用,一般只应用于尼龙6中。另一种在尼龙中使用的无卤阻燃剂是三聚氰胺盐,主要是三聚氰胺尿酸盐和磷酸盐。
它们具有较好的阻燃效率,但热稳定性较差,且由于易吸潮而使得制品在潮湿环境下电性能较差。
6.马上要做毕业论文了,要用到壳聚糖絮凝剂,但是不知道怎么制备,
:①原料预处理:首先将虾壳、蟹壳的肉质、污物等杂质去除,用水洗净,然后干燥;②酸浸:去除原料中无机盐。
将预处理后的虾、蟹壳置于5%稀盐酸中室温下浸泡2h,然后过滤、水洗至中性;③消化:去除原料中蛋白质和脂肪。将酸浸后的虾、蟹壳置于10%的氢氧化钠溶液中煮沸2h,然后过滤、水洗至中性、干燥后即得甲壳素;④脱色:有3种方法,包括日晒脱色,保持微酸湿润条件下,在阳光紫外线作用下用空气中的氧气进行漂白;采用高锰酸钾、亚硫酸氢钠等进行氯化脱色;也可采用有机溶剂如丙酮抽提除去色泽⑤脱乙酰基:甲壳素脱乙酰基。
将甲壳素置于45%- 50%氢氧化钠溶液中在 100- 110℃水解 4h,然后过滤、水洗至中性、干燥得到壳聚糖。
7.苯氧乙酸乙脂的制备工艺
配方
乙醇纳(15%工业用) 51.0
苯乙腈(工业用) 13.0
乙酸乙脂(工业品) 15.0
硫酸(工业品) 19.0
活性镍 1.4
制备方法
(1)苯丙胺的合成可以用苯乙酸为原料,在无水醋酸纳存在下与乙酸酐作用制得苯丙酮,然后以苯丙酮与甲酸铵反应得苯丙胺。
另一种合成方法是以苯乙腈和乙酸乙脂为原料,在乙醇纳存在下进行脱羧反应制得苯丙酮,再由苯丙酮制备苯丙胺,制备过程如下; 生产工艺
1 a-氰基苯丙酮的制备
将15%乙醇纳255克置于反应瓶内,在搅拌下加热至温沸,这时,加苯乙腈65克和乙酸乙脂75克的混合液。然后搅拌回流2小时,冷却至0度,过滤。将滤得的固体抽干,溶与360毫升水中,用38%盐酸中和至PH为4左右,放置2小时,过滤,将滤得的固体抽干,即得粗品a-氰基苯丙酮。
2 苯丙酮的制备
用工业用硫酸95豪升置于反应瓶内,搅拌冷却至10度左右,分批加入a-氰基苯丙酮(直至加完,温度保持在20度以下)。加毕,继续搅拌10分钟,加入水490毫升,置沸水浴上加热2小时,然后静置3--4小时,分取油层进行件压蒸馏,收集109--112度(24*133.PA)馏分,即得苯丙酮(C9H10O),含量约95%,收率以苯乙腈计算约57%。
3苯丙胺制备
将苯丙酮888克,活性镍148克和17%氨-乙醇3升加入反应器内,密闭反应系统,排除空气后,与45--50度,以1.6-0.4MPA压力通入氢气进行氨氢反应,之至不吸氢为止。然后将反应液过滤分离活性镍,排氨,回收乙醇,最后在减压蒸馏中收集80--90度(10--15*133.3PA)馏分,即得苯丙胺,含量93%,收率96%左右
转载请注明出处众文网 » 毕业论文固体酸的制备(固体酸的简介)