1.自适应的自适应滤波器
数学原理 以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。
自适应滤波器可 自适应滤波器 以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的机构组成。
附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。
20世纪4 自适应滤波器 0年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。
维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。
否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。
以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得 式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。 B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。
这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯 自适应滤波器 度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量 式中憕【ε2(n)】为均方误差梯度估计, ks为一负数,它的取值决定算法的收敛性。
要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。 自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。
通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。 抽头延迟线的非递归型自适应滤波器算法的收敛速度,取决于输入信号自相关矩阵特征值的离散程度。
当特征值离散较大时,自适应过程收敛速度较慢。格型结构的自适应算法得到广泛的注意和实际应用。
与非递归型结构自适应算法相 自适应滤波器 比,它具有收敛速度较快等优点。人们还研究将自适应算法推广到递归型结构;但由于递归型结构自适应算法的非线性,自适应过程收敛性质的严格分析尚待探讨,实际应用尚受到一定限制。
编辑本段应用领域 自适应滤波器应用于通信领域的自动均衡、回波消除、天线阵波束形成,以及其他有关领域信号处理的参数识别、噪声消除、谱估计等方面。对于不同的应用,只是所加输入信号和期望信号不 自适应滤波器 同,基本原理则是相同的。
2.自适应的自适应滤波器
自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。
对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理。在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应。
总的来说,自适应的过程涉及到将价值函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的算法。价值函数是滤波器最佳性能的判断准则,比如减小输入信号中的噪声成分的能力。
随着数字信号处理器性能的增强,自适应滤波器的应用越来越常见,时至今日它们已经广泛地用于手机以及其它通信设备、数码录像机和数码照相机以及医疗监测设备中。
3.有源滤波器的设计论文要做的论文,希望高手指点一下,谢谢,本人将
摘 要 交流异步电动机在从变频拖动切换到工频拖动的时候,必须满足两个电源之间保持频率、相位、电压基本一致。
本文讲述了一种实现比较两者频率、相位的实用方法,并探讨如何通过锁相技术使得变频电源能与工频电源保持频率与相位的一致。 变频器的输出电压经分压、隔离、放大、带通滤波后恢复出正弦波信号,再经过过零比较器得到方波信号 ,方波信号 的频率和相位与正弦波保持一致;工频电压通过和上面电路参数完全相同的电路,经分压、隔离放大、滤波、过零比较后得到另外一路方波信号 。
两路方波信号 、通过鉴相-鉴频电路后,经低通滤波器滤波反馈到变频器的模拟量输入端,控制变频器的输出频率和相位,使得它能与工频电源达到同步,能在一定的范围内跟随工频电源的变化而变化,从而为同步切换创造条件。
4.自适应的自适应滤波器
数学原理 以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。
自适应滤波器可 自适应滤波器 以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的机构组成。
附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。
20世纪4 自适应滤波器 0年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。
维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。
否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。
以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得 式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。 B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。
这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯 自适应滤波器 度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量 式中憕【ε2(n)】为均方误差梯度估计, ks为一负数,它的取值决定算法的收敛性。
要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。 自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。
通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。 抽头延迟线的非递归型自适应滤波器算法的收敛速度,取决于输入信号自相关矩阵特征值的离散程度。
当特征值离散较大时,自适应过程收敛速度较慢。格型结构的自适应算法得到广泛的注意和实际应用。
与非递归型结构自适应算法相 自适应滤波器 比,它具有收敛速度较快等优点。人们还研究将自适应算法推广到递归型结构;但由于递归型结构自适应算法的非线性,自适应过程收敛性质的严格分析尚待探讨,实际应用尚受到一定限制。
编辑本段应用领域 自适应滤波器应用于通信领域的自动均衡、回波消除、天线阵波束形成,以及其他有关领域信号处理的参数识别、噪声消除、谱估计等方面。对于不同的应用,只是所加输入信号和期望信号不 自适应滤波器 同,基本原理则是相同的。
5.求基于LMS自适应滤波器的详细资料
自适应滤波器实际上是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要预先知道关于输入信号和噪声的统计特性,它能够在工作过程中逐步“了解” 或估计出所需的统计特性,并以此为依据自动调整自身的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。
自适应滤波器由参数可调的数字滤波器(或称为自适应处理器)和自适应算法两部分组成,如图7-3所示。参数可调数字滤波器可以是FIR数字滤波器或IIR数字滤波器,也可以是格型数字滤波器。输入信号x(n)通过参数可调数字滤波器后产生输出信号(或响应)y(n),将其与参考信号(或称期望响应)d(n)进行比较,形成误差信号e(n),并以此通过某种自适应算法对滤波器参数进行调整,最终使e(n)的均方值最小。尽管自适应滤波器具有各种不同的算法和结构,但是,其最本质特征是始终不变的。这种最本质的特征可以概括为:自适应滤波器依据用户可以接受的准则或性能规范,在未知的而且可能是时变的环境中正常运行,而无须人为的干预。本章主要讨论的是基于维纳滤波器理论的最小均方(LMS)算法,可以看到LMS算法的主要优点是算法简单、运算量小、易于实现;其主要缺点是收敛速度较慢,而且与输入信号的统计特性有关。
自适应线性滤波器是一种参数可自适应调整的有限冲激响应(FIR)数字滤波器,具有非递归结构形式。因为它的分析和实现比较简单,所以在大多数自适应信号处理系统中得到了广泛应用。如图7-4所示的是自适应线性滤波器的一般形式。输入信号矢量x(n)的L+1个元素,既可以通过在同一时刻对L+1个不同信号源取样得到,也可以通过对同一信号源在n以前L+1个时刻取样得到。前者称为多输入情况,如图7-5所示,后者称为单输入情况如图7-4所示,这两种情况下输入信号矢量都用x(n)表示,但应注意它们有如下区别。
单输入情况:
(7-18)
多输入情况:
(7-19)
单输入情况下x(n)是一个时间序列,其元素由一个信号在不同时刻的取样值构成;而多输入情况下x(n)是一个空间序列,其元素由同一时刻的一组取样值构成,相当于并行输入。
对于一组固定的权系数来说,线性滤波器是输出y(n)等于输入矢量x(n)的各元素的线性加权之和。然而实际上权系数是可调的,调整权系数的过程叫做自适应过程。在自适应过程中,各个权系数不仅是误差信号e(n)的函数,而且还可能是输入信号的函数,因此,自适应线性滤波器的输出就不再是输入信号的线性函数。
输入信号和输出信号之间的关系为
单输入情况:
(7-20)
多输入情况:
(7-21)
如图7-4所示的单输入自适应线性滤波器,实际上是一个时变横向数字滤波器,有时称为自适应横向滤波器。它在信号处理中应用很广泛。自适应线性滤波器的L+1个权系数构成一个权系数矢量,称为权矢量,用w(n)表示,即
(7-22)
这样,输出响应表示为
(7-23)
参考响应与输出响应之差称为误差信号,用e(n)表示,即
(7-24)
自适应线性滤波器按照误差信号均方值(或平均功率)最小的准则,即
(7-25)
来自动调整权矢量。
6.自适应陷波器 自适应滤波器
自适应滤波器是根据滤波器的输出量来控制滤波器的某个或某些参数,从而达到自动地滤除某些频率分量.
自适应滤波器有4种基本应用类型:
1) 系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型
2) 逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。
3) 预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤波器的输入端。取决于感兴趣的应用,自适应滤波器的输出或估计误差均可作为系统的输出。在第一种情况下,系统作为一个预测器;而在后一种情况下,系统作为预测误差滤波器。
4) 干扰消除:在一类应用中,自适应滤波器以某种意义上的最优化方式消除包含在基本信号中的未知干扰。基本信号用作自适应滤波器的期望响应,参考信号用作滤波器的输入。参考信号来自定位的某一传感器或一组传感器,并以承载新息的信号是微弱的或基本不可预测的方式,供给基本信号上
具体请看赫金写的《自适应滤波器原理》.
是否可以解决您的问题?
7.LMS自适应算法分析及在数字滤波器设计中的应用
一、应用:
1)消除心电图中的电源干扰;
2)检测胎儿心音时滤除母亲的心音及背景干扰;
3)在有多人讲话的场合下提取某人的讲话;
4)作为天线阵列的自适应旁瓣对消器。
二、简介:
自适应滤波器属于现代滤波器)它是20世纪40年代发展起来的)在自适应信号处理领域中发挥着重要的作用。
自适应滤波器是相对固定滤波器而言的(自适应滤波器滤波的频率是自动适应输入信号而变化的)在没有任何关于信号和噪声的先验知识的条件下。
自适应滤波器利用前一时刻已获得的滤波器的参数来自动调节现时刻的滤波器的参数-以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波器。即是根据不同的信号环境实现自身参数的调整。而实际情况中,信号和噪声的统计特性常常未知或无法获知,因此自适应滤波器的应用空间非常广泛-如系统辨识u噪声对消u自适应均衡w线性预测w自适应天线阵列等很多领域。
转载请注明出处众文网 » 自适应滤波器的设计毕业论文(自适应的自适应滤波器)