1.浅析高中数学函数最值问题求解方法
最值问题是高中数学中永恒的话题,可综合地考查函数的性质、导数、均值不等式、线性规划、向量等知识的应用;涉及到代数、三角、几何等方面的内容;体现数学中的数形结合、分类讨论、转化与化归、函数与方程等思想与方法,并能综合考查学生的数学思维能力、分析和解决问题的能力,是历届高考中的焦点、热点、难点.本文就近几年高考中的常见类型略作探讨,难免有不当之处,权作抛砖引玉. 中国论文网 /9/view-4821051.htm 一、代数问题 一般通过考察常见函数的单调性,或者能够利用导数问题研究其单调性,在定义域内求最值,或者通过方程思想,得到不等式再求最值.【例1】(2008·江西·第9题)若0
2.浅析高中数学函数最值问题求解方法
最值问题是高中数学中永恒的话题,可综合地考查函数的性质、导数、均值不等式、线性规划、向量等知识的应用;涉及到代数、三角、几何等方面的内容;体现数学中的数形结合、分类讨论、转化与化归、函数与方程等思想与方法,并能综合考查学生的数学思维能力、分析和解决问题的能力,是历届高考中的焦点、热点、难点.本文就近几年高考中的常见类型略作探讨,难免有不当之处,权作抛砖引玉. 中国论文网 /9/view-4821051.htm一、代数问题一般通过考察常见函数的单调性,或者能够利用导数问题研究其单调性,在定义域内求最值,或者通过方程思想,得到不等式再求最值.【例1】(2008·江西·第9题)若0
3.浅析数学三角函数最值问题及求解方法
最值问题是高中数学的重点和历年高考的热点,它涉及中学数学的各个分支,在一些特定的领域中应用还十分广泛,分清问题的类型对于最值问题的解决十分有益。
本文就三角函数中的最值问题略作介绍。三角函数是一种函数,因此初等函数中的最值问题的求法对三角函数也适用,但三角函数既然是一种特殊的函数,其最值问题的求法当然也有其独特的地方。
一、配方法例1.(1997年全国)函数y=cos2x-3cosx+2的最小值为()A.2 B.0C.-■D.6略解:由y=cos2x-3cosx+2=(cosx-■)2-■,cosx∈[-1,1]利用三角函数的有界性及二次函数在闭区间上求值域可得:0≤y≤6。答案:B点评:配方法作为初等函数中极为重要的方法在三角函数中应用仍然十分广泛,但本例运用配方法意在确定对称轴的位置。
若将本例变为:函数y=sin2x-cosx+2的最小值为,则需异名化同名(余弦),再由配方法得出答案为1。二、“合一变形”及有界性法例2.(2000年春季北京、安徽文)y=sinx+cosx+2的最小值是()A.2-■ B.2+■C.0 D.1略解:根据两角和与差的三角公式作逆运算得,y=■sin(x+■)+2,再利用三角函数的有界性知:y∈[2-■,2+■]。
答案:A点评:“合一变形”法就是逆用“两角和与差的正余弦公式”对同角异名弦之和与弦之差作“二合一变形”。变题:函数y=■的值域为略解:由y=■得,sinθ=■而sinθ∈[-1,1],故函数的值域为:[-2,0]三、“和积不等式”与“勾子函数”法例3.函数y=sinα+■,α∈(0,π)的最小值为()A.2■ B.-2■C.6 D.-6略解:由α∈(0,π),则sinα∈(0,1)由“勾子函数y=x+■>0”性质可求y≥6。
答案:C变题:函数y=5sinα+■,α∈(0,π)的最小值为()A.2■ B.-2■C.6 D.-6略解:由α∈(0,π),则sinα∈(0,1)由和积不等式知:5sinα+■≥2■,当且仅当sinα=■时取等号答案:A点评:“勾子函数”法的本质是函数的单调性,对于勾子函数y=x+■,a>0,当x∈(0,■]时函数单调减,当x∈(■,+∞]函数单调增。而“和积不等式”强调“一正、二定、三等”限制条件。
四、数形结合与换元法例4.函数y=■的值域为答案:(-∞,0]例5.函数y=sinx+cosx+2sinxcosx的值域为答案:[-■,1+■]点评:例4可看作是圆:x2+y2=1上点(cosθ,sinθ)与点(-2,1)连线的斜率的取值范围。例5则可将sinx+cosx整体换元为t∈[-■,■],并将sinxcosx化为t的代数式,进而将原问题化为二次函数在闭区间上求值域。
五、三角函数最值问题的简单应用例6.(2000年全国,理)已知函数y=■cos2x+■sinxcosx+1,x∈R当函数y取得最大值时,求自变量x的集合;解:y=■cos2x+■sinxcosx+1,x∈R=■cos2x+■sin2x+■=■sin(2x+■)+■y取得最大值必须且只需2x+■=■+2kπ,k∈Z,即x=■+kπ,k∈Z所以当函数y取得最大值时,自变量x的集合为{x|x=■+kπ,k∈Z}点评:本题的突破口是利用三角函数的降幂公式进行恒等变形,重点考查了三角函数最值所取得的条件。例7.设向量■=(3cosx,3sinx),■=(3cosx,sinx),■=(2,0),向量■与向量■的夹角为θ,当变量x∈(0,■)时,(1)求证:(■-■)⊥■(2)求角θ的最大值及相应的x值。
解:(1)∵■-■=(0,2sinx),而■=(2,0)∴( ■ -■ )・ ■=0*2+2sinx*0=0∴(■-■)⊥■(2)∵cosθ=■=■=■又∵x∈(0,■)令:■=t,则t∈(1,3)cosθ=■≥■(当t=■,即cosx=■时取等号)又∵θ∈(0,π),cosθ在(0,π)内为减函数∴θ≤■θ的最大值为■,此时相应的x值为■点评:本例运用了换元法、基本不等式等初等函数最值问题的求法,而其核心是以向量为载体考查三角函数的最值问题。三角函数最值问题的各种解法之间可以互相渗透,而三角函数的有界性则贯串于三角函数问题的始终。
4.关于初中数学那个最大值问题
第一种方法:设y=ax^2+bx+c当自变量x为某个数值时y的值最大,这个值就叫做函数的最大值;相反当x为某个数值时,y的值最小就叫做函数的最小值。
第二种方法:1)确定函数的定义区间,求导数f′(x)(2)求方程f′(x)=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格。检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f(x)在这个根处无极值。
函数最大值、最小值定义:设函数y=f(x)在x0处的函数值是f(x0)。如果对于定义域内任意x,不等式f(x)f(x0)都成立,那么f(x0)叫做函数y=f(x)的最小值,记作ymin=f(x0);如果对于定义域内任意x,不等式f(x)f(x0)都成立,那么f(x0)叫做函数y=f(x)的最大值,记作ymax=f(x0)例题1:求下列二次函数的最大值或者最小值:1.y=-3x2+30xx2.y=3x2-30xx变式1:y=3x2-30xx[-1,3]变式2:y=3x2-30xx变式3:y=3x2-30xx变式4:y=3x2-30xx[1,10]例题2:求函数f(x)=x2-2x+2在x[t,t+1]上的最大值和最小值思考题:求函数f(x)=x2-2ax+1在x[0,1]上的最大值和最小值。
5.初中数学二次函数的最值问题求解分析
在得到二次函数解析式后,
Y=aX^2+bX+c(a、b、c为常数,a≠0),
当a>0时,X=-b/2a,Y有最小值,Y=(4ac-b^2)/4a,
当a<0时,X=-b/2a,Y有最大值,Y=(4ac-b^2)/4a.
在实际问题中,存在二次函数自变量取值范围不包括抛物线的对称性,
那就必须依据在对称轴的左右侧判断Y的增减性,
确定出Y的最大或最小值,
当自变量是闭区间时,可以同时存在最大值与最小值。
6.关于数学论文的问题
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47*5=244,把首项加末项的和乘项数除以2,(9+244)*48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)*48÷2*2+(2+49)*48÷2*2+(3+50)*48÷2*2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)*5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)*5+4*48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘
转载请注明出处众文网 » 毕业论文中学数学中的最值问题(浅析高中数学函数最值问题求解方法)