1.本科论文的数据分析怎么做
研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。
如果思路上更偏向于差异关系研究,比如不同收入人群对于网购的态度差异。建议使用较多规范的量表题,因为量表规范性很强且可以使用非常多的研究方法;如果不是使用量表题,那么就可以考虑卡方分析进行研究。如果进行更多丰富的研究方法使用,则对应需要使用多样的问题设计,量表题和非量表题均需要有,并且预期上它们就需要进入差异对比的范畴。
如果思路上更偏向于研究影响关系,比如满意度对于忠诚度的影响,看上去,满意度和忠诚度均可以使用量表题进行表示,那设计成量表题没有问题,因为可以使用线性回归分析进行研究。除此之外,还有一种情况可以考虑,即logistic回归,满意度影响最终是否再次购买,是否再次购买被满意度影响,这类情况是应该使用logistic回归分析。如果是希望两类研究方法均使用,此时满意度对应的问题则需要有量表题,还有比如“是否愿意再次购买”一类的定类数据问题。
如果预期数据需要进行统计上的信度分析,此时请记住一定需要设计成量表题,否则无法进行信度分析。以及如果预期思路上有分类,即比如将样本分成3种人群,此时需要考虑使用更多规范的量表题数据。
总结上看,研究方法的匹配使用,事实上应该是在问卷设计前就进入考虑范畴。问卷研究设计完成后,大部分的问卷研究方法均已经确定,因而需要提前将问卷研究方法纳入考虑中,便于可以进行更丰富的数据分析。相对来看,量表题是可以匹配更多的研究方法,而且也更规范,建议更多的使用量表题较好。
参考资料:/p/5
2.毕业论文实证分析不会怎么办
通常在写作论文时,实证分析一般是必不可少的,那么实证分析又该如何写比较好呢?实证分析目的是,为了让论文中所提出的观点或证明某一理论做支撑,其中包括有两种分析方法,一种是统计分析,另一种是回归分析。
对于某些理论性的观点,需要举例一些论证来证明它。如果论证的结果与事实不符合,那可能会有这几个原因:
(1)如果事实与理论不符,理论并不能解释这一现象;
(2)理论本身就错误的,只要反例可以否定一个理论(被事实篡改),没有任何反例理论被认为是暂时可以接受的假设;
(3)该理论的所在背景与目前社会的实际情况有所差异,我们应该分析不一致的地方,然后进行理论改进,或者提出相对应的政策建议来改变现实。相对比理论分析,实证分析则应该成为论文写作和选题的重点。
由于理论创新的难度,实证分析能够并且能够反映论文写作过程中的工作量,从而使论文更容易被采纳。毕业论文(尤其是学士和硕士论文)应以实证分析为基础,包括:
1、案例的调查与分析可以包括:具有一定创新意义的案例分析,如果案例可以否定某一理论,或解释该理论不适用于某一领域,则进行具有现实意义的社会调查。
2、发现一个有利的论据,可以证明别人已经提出的但尚未被人证明过的理论,属于实证分析的创新。
3、使用大样本数据验证理论或新方法来验证理论或观点,尽管其他人使用了相同的数据,但我们自己使用的数据更多,这样可以显得更有说服力,具有一定的创新价值。
4、进行历史分析或比较分析的,尽量比别人收集更多的信息,或寻找新的证据,可以提出新的想法,或有第一手资料,这样的实证分析往往会成为新颖点,毕竟一篇论文的重点就是创新。
转载请注明出处众文网 » 本科毕业论文没有做回归分析(本科论文的数据分析怎么做)