激光打码毕业论文(关于激光的论文)

1.关于激光的论文

激光——人类创造的神奇之光 激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。

意思是“受激辐射的光放大”。激光的英文全名已完全表达了制造激光的主要过程。

1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。 激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。

它的原理早在 1916 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。激光是在有理论准备和生产实践 迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。

激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。 激光的产生原理: 受激辐射基于伟大的科学家爱因斯坦在1916年提出的一套全新的理论。

这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”, 一段激活物质就是一个激光放大器。

激光的特点: (一)定向发光 普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。

激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。

若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。 (二)亮度极高 在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。

因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为0.02勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。

若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。

大量光子集中在一个极小的空间范围内射出,能量密度自然极高。 (三)颜色极纯 光的颜色由光的波长(或频率)决定。

一定的波长对应一定的颜色。太阳光的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。

发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。

单色光源的光波波长虽然单一,但仍有一定的分布范围。如氪灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有0.00001纳米,因此氪灯发出的红光,若仔细辨认仍包含有几十种红色。

由此可见,光辐射的波长分布区间越窄,单色性越好。 激光器输出的光,波长分布范围非常窄,因此颜色极纯。

以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到2*10-9纳米,是氪灯发射的红光波长分布范围的万分之二。由此可见,激光器的单色性远远超过任何一种单色光源。

(四)能量密度极大 光子的能量是用E=hγ来计算的,其中h为普朗克常量,γ为频率。由此可知,频率越高,能量越高。

激光频率范围3.846*10^(14)Hz到7.895*10^(14)Hz. 激光能量并不算很大,但是它的能量密度很大(因为它的作用范围很小,一般只有一个点),短时间里聚集起大量的能量,用做武器也就可以理解了。 目前激光技术及其应用研究内容包括: ⑴超快超强激光:超快超强激光主要以飞秒激光的研究与应用为主,作为一种独特的科学研究的工具和手段,飞秒激光的主要应用可以概括为三个方面,即飞秒激光在超快领域内的应用、在超强领域内的应用和在超微细加工中的应用。

其中飞秒激光超微细加工是当今世界激光、光电子行业中的一个极为引人注目的前沿研究方向。 ⑵新型激光器研究:激光测距仪是激光在军事上应用的起点,将其应用到火炮系统,大大提高了火炮射击精度。

激光雷达相比于无线电雷达,由于激光发散角小,方向性好,因此其测量精度大幅度提高。由于同样的原因,激光雷达不存在"盲区",因此尤其适宜于对导弹初始阶段的跟踪测量。

但由于大气的影响,激光雷达并不适宜在大范围内搜索,还只能作为无线电雷达的有力补足。 ⑶激光医疗:激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。

多年来,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学。

2.帮我写一篇激光原理的论文

激光发展史激光以全新的姿态问世已二十余年。

然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。

自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。

在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。

后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。

大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。

大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯(C.H.Townes)领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。

1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。

这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。

25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。

汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛(A.L.Schawlow)与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。

这又将激光研究推上了一个新阶段。 现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。

值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。

但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。

在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。

谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”

实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。

几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。

因此,我开始探索、寻找固体激光器的材料…。”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。

不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。

可喜的是,科学家迈曼(T.H.Maiman)巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。

7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。

激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。

20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。

1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。

诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。

1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年T.H.梅曼等人制成了第一台红宝石激光器。

1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。

以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。

近来还发展了自由电子激光器。

3.求关于"激光打印机的发展与历史"的毕业论文

追溯历史:看激光打印机的发展道路2005-7-13 9:38:00 文/无边 编辑整理 出处:IT.com.cn(IT世界) 任何一项技术的发明与运用通常都是艰辛的,打印机也是如此,从1885年全球第一台打印机出现以后,科学家们不断地探索,从点阵式打印机到针式打印机,再到喷墨打印机、激光打印机,每一步都履步艰辛,但每一次突破都为人类带来新的福音,这也是科学的根本意义所在。

今天笔者打开历史的记录本,和朋友们一起去了解激光打印机曾经被遗忘的过去。 一、概述 激光打印机的研制,起源于施乐(Xerox)公司1948年生产的世界首台静电复印机。

从此以后科学家们开始潜心研究激光技术和激光调制技术在打印机的应用。而说到激光打印机的诞生,不能不谈到被人们誉为“激光打印机之父”的盖瑞·斯塔克维。

1970年盖瑞·斯塔克伟泽调到帕罗阿图研究中心(简称PARC,即帕克)工作,1971年11月研制出了世界上第一台激光计算机打印机。1977年,施乐公司的9700型激光打印机投放市场,标志着印刷业一个划时代的开始。

刚开始的激光打印机的体积庞大,噪声大,预热需要很长时间而且打印的质量也不尽人意,能支付相当昂贵费用的企业也较少,但技术革新的速度很快,随着半导体激光器的发展、微机控制和激光打印机生产技术的日益成熟,成本不断降低,到了上个世纪90年代,生产和销售额突飞猛进,激光打印机也开始走向普及。 激光打印机由于具有打印质量精美、输出效率高及打印成本低的优势,近年在打印机市场上独占鳌头,成为现代办公不可缺少的输出设备。

随着互联网的触角深入到世界的每一个角落,政府、企业、家庭信息化建设的加速,激光打印机应用也越来越广泛。 二、技术 无论是黑白激光打印机还是彩色激光打印机,其基本工作原理是相同的。

激光打印机的工作原理如复印,利用电子成像转印技术进行打印。具体来说:首先,计算机把需要打印的内容转换成数据序列形式的原始图像,然后再把这些数据传送给打印机。

打印机中的微处理器将这些数据破译成点阵的图样,破译后的点阵图样被送到激光发生器,激光发生器根据图样的内容迅速作出开与关的反应,把激光束投射到一个经过充电的旋转鼓上,鼓的表面凡是被激光照射到的地方电荷都被释放掉,而那些激光没有照到的地方却仍然带有电荷,通过带电电荷吸附的碳粉转印在纸张上从而完成打印。彩色激打构造:四次成像彩色激打构造:一次成像 而彩色激光打印机与黑白激光打印机最大的区别是在引擎结构上,彩色激光打印机采用了C(Cyan,蓝色)、M(Magenta,品红)、Y (Yellow,黄色)和K(Black,黑色)4色碳粉来实现全彩色打印,因此对于一页彩色内容中的彩色要经过CMYK调和实现,一页内容的打印要经过 CMYK的4色碳粉各1次打印过程。

从理论上讲,彩色激光打印机要有4套与黑白激光打印机完全相同的机构来实现彩色打印过程。在打印控制器方面,内部处理器的速度比黑白激光打印机高,配置内存也要比黑白激光打印机大。

目前主流的激光打印技术纷繁复杂,我们没有必要一一去探索其原理,下面让我们从打印速度、分辨率、色彩处理技术三方面去了解一些主要的有代表性的技术。打印速度技术革新分辨率技术革新色彩处理技术革新彩色同速技术 Tandem高速引擎 imageRET2400技术 精细墨点控制技术 CoLorSmartII智能色彩二代技术 色阶扩展技术Ⅱ 1。

打印速度技术革新 彩色同速技术 惠普的彩色同速技术,也就是一次成像技术,四种颜色的都有各自的成像鼓,因此可在同一时间内在四个成像鼓上分别呈现四种颜色的"电子影像",并吸附各自对应颜色的碳粉形成四个不同颜色的"潜影",纸张依次通过四种颜色的"潜影"转印到打印介质上,最后通过定影辊实现定影,由于颜色是一遍打印完成而不是四遍,彩色打印性能得到很大的改进,彩色打印速度与黑白打印一样。 Tandem高速引擎 这一技术在Epson Aculaser C4100最新彩色激光打印机中得到充分的发挥,采用先进的4-2-1串联式(Tandem)打印引擎,CMYK四种色彩能够一次成像,使得打印速度比传统彩色激光打印机速度快4倍,获得每分钟24页的彩色黑白同速的高效输出。

2。分辨率技术革新 imageRET2400技术 imageRET2400技术也叫图像分辨率增强技术,这里我们以惠普ColorLaserJet4500彩色激光打印机为例,它采用惠普专利的 ImageRet2400色彩分层技术,在引擎的600dpi物理分辨率基础上,使用颗粒直径小至5微米的UltraPrecise超精细碳粉,在每一个物理像素点上进行多层着色,实现2400dpi效果。

这种打印过程在单一点上最大限度地融合进四种颜色,并在指定区域内对碳粉进行分配,实现对颜色的精确控制,从而产生出上百万种柔和的色彩。 精细墨点控制技术 爱普生 AcuLaser精细墨点控制技术通过改变应用于曝光单元的脉冲宽度来控制激光发射的时间。

对脉冲宽度的精确控制使得打印机能够控制墨点的大小。所以,该技术可以复制平滑的灰度等级,即使是在亮区和暗区。

4。色彩处理技术革新 色彩处理技术当然是针对彩色激光打印机的,是整个打印机质量重要指标之一。

4.激光加工技术论文

目 录一、激光加工的起源和原理-------------------------------------------------------5二、激光加工的特点---------------------------------------------------------------5三、激光加工的应用---------------------------------------------------------------6四、激光的发展趋势---------------------------------------------------------------7五、结论-----------------------------------------------------------------------------8六、致谢-----------------------------------------------------------------------------9现代制造技术特种加工---激光加工1、激光加工的起源和原理随着科学技术的发展和社会需求的多样化,产品的竞争越来越激烈,更新换代的周期也越来越短。

为此,要求不但能根据市场的要求尽快设计出新产品,而且能在尽可能短的时间内制造出原型,从而进行性能测试和修改,最终形成定型产品。而在传统制造系统中,需要大量的模具设计、制造和调试等工作,成本高,周期长,已不能适应日新月异的市场变化。

为了提高研发和生产速度,快速而精确地制作出高质量、低成本的模具和产品,能对市场变化做出敏捷响应,人们作了大量的研究和探索工作。随着工业激光器价格的不断下降和工业激光加工技术的日益成熟,给模具制造和产品生产工艺带来了重大变革激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。

由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。

2、激光加工的特点激光具有的宝贵特性决定了激光在加工领域存在的优势:2.1由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。2.2它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。

2.3激光加工过程中无“刀具”磨损,无“切削力”作用于工件。2.4激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。

因此,其热影响区小,工件热变形小,后续加工量小。2.5它可以通过透明介质对密闭容器内的工件进行各种加工。

2.6由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。2.7使用激光加工,生产效率高,质量可靠,经济效益好。

3、激光加工的应用激光加工是利用光的能量经过透镜聚焦后在焦点上达到很高的能量密度,靠光热效应来加工的。激光加工不需要工具、加工速度快、表面变形小,可加工各种材料。

用激光束对材料进行各种加工,如打孔、切割、焊接、热处理等。 某些具有亚稳态能级的物质,在外来光子的激发下会吸收光能,使处于高能级原子的数目大于低能级原子的数目——粒子数反转,若有一束光照射,光子的能量等于这两个能相对应的差,这时就会产生受激辐射,输出大量的光能。

激光加工的应用主要有以下几个方面:3.1、激光打孔采用脉冲激光器可进行打孔,脉冲宽度为0.1~1毫秒,特别适于打微孔和异形孔,孔径约为0.005~1毫米。激光打孔已广泛用于钟表和仪表的宝石轴承、金刚石拉丝模、化纤喷丝头等工件的加工。

3.2、激光切割、划片与刻字在造船、汽车制造等工业中,常使用百瓦至万瓦级的连续CO2激光器对大工件进行切割,既能保证精确的空间曲线形状,又有较高的加工效率。对小工件的切割常用中、小功率固体激光器或CO2激光器。

在微电子学中,常用激光切划硅片或切窄缝,速度快、热影响区小。用激光可对流水线上的工件刻字或打标记,并不影响流水线的速度,刻划出的字符可永久保持(图1)。

图1激光刻字 3.3、激光微调采用中、小功率激光器除去电子元器件上的部分材料,以达到改变电参数(如电阻值、电容量和谐振频率等)的目的。激光微调精度高、速度快,适于大规模生产。

利用类似原理可以修复有缺陷的集成电路的掩模,修补集成电路存储器以提高成品率,还可以对陀螺进行精确的动平衡调节。 3.4、激光热处理用激光照射材料,选择适当的波长和控制照射时间、功率密度,可使材料表面熔化和再结晶,达到淬火或退火的目的。

激光热处理的优点是可以控制热处理的深度,可以选择和控制热处理部位,工件变形小,可处理形状复杂的零件和部件,可对盲孔和深孔的内壁进行处理。例如,气缸活塞经激光热处理后可延长寿命;用激光热处理可恢复离子轰击所引起损伤的硅材料。

激光加工的应用范围还在不断扩大,如用激光制造大规模集成电路,不用抗蚀剂,工序简单,并能进行0.5微米以下图案的高精度蚀刻加工,从而大大增加集成度。此外,激光蒸发、激光区域熔化和激光沉积等新工艺也在发展中。

3.5、激光焊接激光焊接强度高、热变形小、密封性好,可以焊接尺寸和性质悬殊,以及熔点很高(如陶瓷)和易氧化的材料。激光焊接的心脏起搏器,其密封性好、寿命长,而且体积小。

4、激光的发展趋势激光加工用于再制造业和应用于其他制造业。

5.求“浅谈激光加工技术在模具制造中的应用”的毕业论文

《模具工业》2001. No . 4 总 242 40 激 光 加 工 技 术 在 模 具 制 造 中 的 应 用 江苏理工大学(江苏镇江 212013) 张 莹 周建忠 戴亚春 [摘要]随着激光加工技术的日趋成熟和工业用大功率激光设备价格的逐渐下降 ,给产品和 模具的制造工艺带来了新的变革 ,在模具制造、模具表面强化与维修、取代模具等 3个方面 ,就 激光优化模具制造工艺作了较为详细的分析和探讨。

关键词 模具 激光 工艺优化 [ Abstract ]Wi t h t he mat uri ng of t he las e r p r oces si ng t echnology and t he dec r easi ng of p rice of t he i ndus t rial la r ge - p owe r las e r e quipme nt , a new i nnovat ion was br ought t o t he manuf act uri ng t echnology of t he p r oduct s and t he dies and moulds . A r elat ively de t ailed analysis and dis cus sion was made on t he las e r op t imized manuf act uri ng p r oces s f or dies and moulds f r om t hr e e asp ect s of manuf act uri ng , s urf ace r ei nf orceme nt and mai nt e nance , and s ubs t i t ut ive dies or moulds . Key words die and mould , las e r , t echnological p r oces s op t imizat ion 1 引 言 激烈的市场竞争使制造企业对快速响应市场 需求和一次制造成功等要求日益迫切。而在常规制 造系统中 , 产品生产所需大量模具的设计、制造和 装配调试不仅耗费大量资金 , 更严重的是延长了产 品生产的准备时间 , 从而延长了新产品开发周期 , 形成制造过程中的瓶颈。

因此 , 如何快速有效地制 造出高质量、低成本的模具及产品 , 就成为人们不 断探索的课题。随着激光加工技术的日趋成熟和工 业用大功率激光器设备价格的下降 , 给产品和模具 制造工艺带来了重大变革。

本文在模具制造、模具 表面强化与维修、取代模具等 3个方面 , 就激光加 工在模具制造中的应用作一些探讨。 2 模具制造 2. 1 模具的激光叠加制造 1982年 ,日本东京大学的中川教授等人提出用 薄片叠加法制造拉伸模 , 1985年 , 美国加州某公司 推出了模具的激光叠加制造法 , 并获得专利 , 其工 艺流程见图 1 ,原理为将激光切割的多层薄板叠加 , 并使其形状逐渐发生变化 , 最终获得所需的模具立 体几何形状。

日本在冲模的激光叠加制造方面已达 到实用阶段 ,所制的凸、凹模质量高 ,加工尺寸精度 — — —— — —— — —— — —— — —— — —— 收稿日期:2000年8月10日 已达 ±0. 01mm ,切割厚度为 12mm。 经激光切割后 , 在切口表面形成深 0. 1~0. 2mm、硬度为 800HV 的 硬化层 ,用来冲裁 1mm 厚的钢板 ,单凭自冷硬化层 就可冲压 10 000 件 , 如在激光切割后再经火焰淬 火 ,则可冲压 3~5万件。

由于各薄板间的连接简单 , 故用叠加法制作冲模 ,成本可降低一半 ,生产周期大 大缩短。用来制造复合模、落料模和级进模等都取 得了显著的经济效益。

图 1 激光叠加模具制造工艺流程 由模具 CAD 和激光切割相结合构成一个完整 的模具 CAD/ CAM 系统 ,实现板料切割的 FMS ,适 用于多品种小批量生产。用激光切割的薄板来叠加 合成任意三维曲面的制造系统 , 不仅为在塑性加工 和模具领域中实行 FMS 提供了思路 , 而且对于内 部结构复杂的模具制造 ,如型孔、中孔体及复杂的冷 却管道等 ,也是快速而经济的制造模具的有效方法 , 并且能带动其他技术如固相扩散等的发展。

2. 2 快速模具制造 模具 CAD 三维设计 二维外形 NC 程序 激光 切割 去除 梯级 创层面 精加工 成形 模具 装 配 薄片 连结 精加工 NC 程序 模 具 制 造 技 术《模具工业》2001. No . 4 总 242 41 快速成型制造技术(RPM)是 80年代后期出现 的一项制造技术 , 目前 RPM 技术已发展了十几种 工艺方法。基于 RPM 技术快速制造模具的方法多 为间接制模法 , 即利用 RPM 原型间接地翻制模 具。

(1) 软质简易模具 (如汽车覆盖件模具) 的制 作。采用硅橡胶、低熔点合金等将原型准确复制成 模具 , 或对原型表面用金属喷涂法或物理蒸发沉积 法镀上一层熔点极低的合金来制作模具。

这些简易 模具的寿命为 50~5 000件 ,由于其制造成本低 ,制 作周期短 , 特别适用于产品试制阶段的小批量生 产。 (2) 钢质模具制作。

RPM 原型 — — — 三维砂轮 — — — 整体石墨电极 — — — 钢模 ,一个中等大小、较为复 杂的电极一般 4~8h 即可完成。 美国福特汽车公司 用此技术制造汽车覆盖件模具取得了满意的效果 , 与传统机械加工制作模具相比 , 快速模具制造省去 了耗时、昂贵的 CNC加工 ,加工成本及周期大大降 低 ,具有广阔的应用前景。

3 模具表面强化与修复 为提高模具的使用寿命 , 常常需对模具表面进 行强化处理。常用的模具表面强化处理工艺有化学 处理 (如渗碳、碳氮共渗等) 、表层复合处理 (如堆 焊、热喷涂、电火花表面强化、PVD 和 CVD 等) 以 及表面加工强化处理(如喷丸等) 。

这些方法大多工 艺较为复杂 , 处理周期较长 , 且处理后存在较大的 变形。采用激光技术来强化和修复模具 , 具有柔性 大 , 表面硬度高 , 工艺周期短 , 工作环境洁净等优 点 ,因此具有很强的生命力。

3. 1 激光相变硬化 激光相变硬化 (激光淬火) 是利用激光辐照到 金属表面 , 使其表面以很高的升温速度达到相变温 度 。

6.寻求一份完整的激光切割机论文

计算机控制三D光电跟踪激光切割机设计摘 要: 光电跟踪切割机由于具有性能稳定、坚固耐用、效率高、易操作、切割精确度高、生产成本低等特点而在各种精密机加工方面得到广泛应用。

但是目前的光电切割机只能进行二维图纸扫描,按照图纸进行二维切割。如德国梅塞一格里斯海姆公司的KS26/3100直角坐标式光电跟踪切割机就只能进行二维切割。

本文设计一种全新的三维光电跟踪切割机是利用摄像技术的一种全新理念的计算机控制三维动态的光电控制切割机。[著者文摘]关键词: 三维动态 光电跟踪 计算机控制 切割机。

7.寻求一份完整的激光切割机论文

计算机控制三D光电跟踪激光切割机设计摘 要: 光电跟踪切割机由于具有性能稳定、坚固耐用、效率高、易操作、切割精确度高、生产成本低等特点而在各种精密机加工方面得到广泛应用。

但是目前的光电切割机只能进行二维图纸扫描,按照图纸进行二维切割。如德国梅塞一格里斯海姆公司的KS26/3100直角坐标式光电跟踪切割机就只能进行二维切割。

本文设计一种全新的三维光电跟踪切割机是利用摄像技术的一种全新理念的计算机控制三维动态的光电控制切割机。[著者文摘]关键词: 三维动态 光电跟踪 计算机控制 切割机。

8.求一篇<激光及其医学上的应用>的论文.字数1000~1200

1 激光全患技术 激光全息技术是20世纪60年代初兴起的一门技术。

激光全息技术发展很快,已在生产和科研的许多领域中广泛应用。最先把激光全息技术应用于医学的是Van Ugten,他于1966年在世界上首次摄得眼全息图,但限于当时的技术水平,再现像的分辨率较差。

以后各国科学家相继开始将激光全息技术应用于医学领域,从眼科扩展至胸外科、口腔科等。二次曝光的成功,促成了全息测量技术的发展,20世纪70年代出现的超声全息技术,将全息技术推进了一大步。

由于超声可深入人体内部,因而超声全息可探测人体内部器官,如肠、胃、肝、胆及主胎儿等的生理异常,肢端和关节软组织的超声全息成像是极有价值的,超声全息还有希望应用于腱、肌肉和神经结构的显示。激光全息医学诊断术虽然产生的时间不长,但由于它具有种种优点,已越来越为人们所重视,并日益广泛地应用于临床。

1.1 全患照相术 全息照相术与一般照相不同,照相是记录物体信息的一种技术,一般是将物体通过透镜成像在底片上,底片乳胶只记录光强(振幅),而不能记录相位,因而失掉了三维特征。而全息照相底片上不只记录光强(振幅),也记录相位(各点间的相互位相关系),也就是记录物的全部信息,所以称为全息。

全息照片最早是由英国汤姆逊-豪斯敦公司的:盖宝摄得。照片的实质是将来自物体的波前和另一个参考波(通常是平面波或球面波)相干涉,底片记录干涉条纹,将同样的参考波照射此底片时,可在相应位置重新出现三维物体。

由此可见,全息照相和一般照相具有相同之处,即同样是记录物体信息的一种手段,但又有所不同,其特点如下: (1)因为全息照相记录的是物体的光波,而不是物体的像,因而用这种底片来观察物体时,可以变换视点来改变观察方向,亦即可以从不同的位置来考察物体(而一般照相只是从照相位置观察物体,即在照相镜头处观察物体)。观察方向只受到照片尺寸大小的限制。

(2)全息照相不需要透镜,但需要一个参考波源,如果参考波和再现波采用不同的波长,那么还可以具有放大或缩小的功能。 (3)全息照相具有深度效应(体视效应)。

如变换观察方向时,后面部分可被前面部分遮挡,远处物体随着观察者运动而近处的不动,闪光忽隐忽现等。 (4)普通照相底片能直接看出物体的形状,而全息照相由于在激光照射下,记录的是干涉图样,所以在普通光线下观察时,看不到什么物体,而只是灰色的一片,要想见到展现物,必须用再现光照射(目前已制出一种能在普通光照射下再现的全息照片)。

(5)全息片记录的是干涉条纹,对底片的分辨率要求较高(在参考光和物体之间夹角很小时,可采用分辨率略低些的底片)。因此,稍有振动,就会使照片模糊,故必须采取严格的防震措施。

(6)普通相正负片的结果正好相反,而在全息照片中,不论正片还是负片结果一样。 1.2 全息技术在医学上的应用 眼全息照相实验装置简图。

激光由半反镜分成两束,一束为球面波参考光,另一束通过纤维光束,以球状通过接触镜进入眼球,眼球各部分的反射光和慢射光由瞳孔中央部6mm直径处射出,经投影透镜作为物波记录在全息底版上,激光是氩离子激光器,λ= 0.5145Um P=100mW t=10ms-30ms,眼底网膜上的光亮约为3*10-3J/cm2。重现象可观察晶体表面、虹膜和视网膜。

这样就能用一张全息照片对从晶体到网膜的眼球各部分自由地进行三维检测。 为使全息像精确地再现,必须在再现时精确地重复参考光。

冲洗好的全息片必须精确放好,误差一般应小于几秒弧度,以免发生慧差和相差,再现装置的示意图,激光经准直器照亮全息图片,通过显微镜或闭路电视系统观察实像。全息图片夹在可以多维精确微量调整的 定位器上,以作精密定位,调整时在显微镜下或电视屏幕上观察,使失真和像差最小,而成像清晰。

利用全息可以拍到活体眼的角膜、晶状体和视网膜相片,从而对眼的各层介质进行活体观察,这是用其它方法难以办到的眼全息图,亦可表示出眼内的异物的大小、形状和位置。 此外,利用激光全息二次曝光法,可对人体各部分进行三维记录。

而根据再现图上的干涉条纹又可以测量人体器官的变形、内力和振动等。用全息测量矫形手术,前后股骨的髌骨端的变形,以使人工髋关节的形状达到最佳程度,还可利用二次曝光法分析人体胸廓的变形,以寻找癌变部位和大小,也可对眼底的微循环进行研究,利用超声全息技术,可以获得一般照相技术无法得到的体内器官全息像。

由于超声的无损性,因而这一方法被认为是探测人体内脏器官和胎儿的最佳方法。 2 C02医用激光器在医学上的应用及改进 2.1 C02医用激光器在医学上的应用 随着激光技术的迅猛发展,激光在医学上的应用越来越广泛,激光可作为良好的手术刀用,它不但运用于一切手术开刀,而且具有良好的选择性,与常规手术刀相比,激光手术的最大特点是失血少,对于某些部位和器官用激光作手术最有优越性。

我院购置的C02医用激光器是上海医用激光仪器厂研制并生产的YYJG-lA型,该机性能可靠,使用方便,随机备有烧灼探头,聚焦镜头和散焦镜头,不仅能使激光能输出原光束。

激光打码毕业论文

转载请注明出处众文网 » 激光打码毕业论文(关于激光的论文)

资讯

毕业论文写审计(大学毕业论文怎么写)

阅读(75)

本文主要为您介绍毕业论文写审计,内容包括大学毕业论文怎么写关于审计专业的,我是学审计专业的审计毕业论文怎么写啊,会计与审计的毕业论文怎么写啊8000字以上的。选题应考虑的因素。具体说,选题应考虑以下因素:一是要立足于自己的专业基础和

资讯

毕业论文任务书1001毕业论文任务书(毕业论文任务书怎么写)

阅读(88)

本文主要为您介绍毕业论文任务书1001毕业论文任务书,内容包括毕业论文任务书应该填什么,毕业论文任务书怎么写,毕业论文的任务书怎么写。论文任务书怎么写 课题的内容和要求课题内容:主要写作课题目的意义,用简洁、概括性的语言来表达课题的

资讯

音乐毕业音乐会总结论文(毕业专场音乐会总结材料作文)

阅读(125)

本文主要为您介绍音乐毕业音乐会总结论文,内容包括毕业专场音乐会总结材料作文,音乐会鉴赏论文,毕业季的音乐会结束语。灯渐渐暗了,只剩几束银光射到台上七位提琴演奏者的身上,他们在灯光的照耀下,如上帝派来为人类传诵福音的天使一般,纯洁神圣

资讯

毕业论文一般学校查重率(毕业论文查重重复率不能超过多少)

阅读(80)

本文主要为您介绍毕业论文一般学校查重率,内容包括本科毕业论文查重率一般多少以下算合格,一般毕业论文重复率到多少算过,大专毕业论文查重率标准是多少。我们常说的毕业季就是每年的6月份,这时就会有一大批的本科毕业生即将步入社会。但是

资讯

毕业论文写审计(大学毕业论文怎么写)

阅读(75)

本文主要为您介绍毕业论文写审计,内容包括大学毕业论文怎么写关于审计专业的,我是学审计专业的审计毕业论文怎么写啊,会计与审计的毕业论文怎么写啊8000字以上的。选题应考虑的因素。具体说,选题应考虑以下因素:一是要立足于自己的专业基础和

资讯

毕业论文任务书1001毕业论文任务书(毕业论文任务书怎么写)

阅读(88)

本文主要为您介绍毕业论文任务书1001毕业论文任务书,内容包括毕业论文任务书应该填什么,毕业论文任务书怎么写,毕业论文的任务书怎么写。论文任务书怎么写 课题的内容和要求课题内容:主要写作课题目的意义,用简洁、概括性的语言来表达课题的

资讯

毕业论文一般学校查重率(毕业论文查重重复率不能超过多少)

阅读(80)

本文主要为您介绍毕业论文一般学校查重率,内容包括本科毕业论文查重率一般多少以下算合格,一般毕业论文重复率到多少算过,大专毕业论文查重率标准是多少。我们常说的毕业季就是每年的6月份,这时就会有一大批的本科毕业生即将步入社会。但是

资讯

硕士毕业需要发表论文时间(研究生毕业论文要写多久)

阅读(119)

本文主要为您介绍硕士毕业需要发表论文时间,内容包括硕士要毕业了,要在什么时间前在刊物上发表论文,硕士研究生发表一篇小论文需要多长时间,研究生毕业论文要写多久。硕士论文比学术论文更具有一定的理论深度和更高的学术水平,强调作者思想

资讯

陶渊明毕业论文提纲三级目录(陶渊明论文资料)

阅读(77)

本文主要为您介绍陶渊明毕业论文提纲三级目录,内容包括陶渊明论文资料,求有关陶渊明的书籍目录和相关学术论文,请问毕业论文的三级目录式大纲是什么。陶渊明(365427),字元亮,别号五柳先生,晚年更名潜,卒后亲友私谥靖节。东晋浔阳柴桑人(今九江市)人