1.本科论文的数据分析怎么做
研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。
如果思路上更偏向于差异关系研究,比如不同收入人群对于网购的态度差异。建议使用较多规范的量表题,因为量表规范性很强且可以使用非常多的研究方法;如果不是使用量表题,那么就可以考虑卡方分析进行研究。如果进行更多丰富的研究方法使用,则对应需要使用多样的问题设计,量表题和非量表题均需要有,并且预期上它们就需要进入差异对比的范畴。
如果思路上更偏向于研究影响关系,比如满意度对于忠诚度的影响,看上去,满意度和忠诚度均可以使用量表题进行表示,那设计成量表题没有问题,因为可以使用线性回归分析进行研究。除此之外,还有一种情况可以考虑,即logistic回归,满意度影响最终是否再次购买,是否再次购买被满意度影响,这类情况是应该使用logistic回归分析。如果是希望两类研究方法均使用,此时满意度对应的问题则需要有量表题,还有比如“是否愿意再次购买”一类的定类数据问题。
如果预期数据需要进行统计上的信度分析,此时请记住一定需要设计成量表题,否则无法进行信度分析。以及如果预期思路上有分类,即比如将样本分成3种人群,此时需要考虑使用更多规范的量表题数据。
总结上看,研究方法的匹配使用,事实上应该是在问卷设计前就进入考虑范畴。问卷研究设计完成后,大部分的问卷研究方法均已经确定,因而需要提前将问卷研究方法纳入考虑中,便于可以进行更丰富的数据分析。相对来看,量表题是可以匹配更多的研究方法,而且也更规范,建议更多的使用量表题较好。
参考资料:/p/5
2.求助,谁能帮忙指导一下如何做统计分析
随意点的,到网上多找资料,自己做。你要是真写不到,你提出了你的具体要求找人做,我朋友的论文是找【天下文库】做的,他都通过了,你也可以去咨询下。
怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。
第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。 第二就是内容的撰写。开题报告的主要内容包括以下几个部分: 一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。 二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”
3.本科论文实证分析
实证分析方法:实证的分析工具 实证分析要运用一系列的分析工具,诸如个量分析与总量分析、均衡分析与非均衡分析、静态分析与动态分析、定性分析与定量分析、逻辑演绎与经验归纳、经济模型以及理性人的假定等等。
我们这里着重介绍在经济学中应用最多而在前面又未曾有过说明的均衡分析、静态分析与动态分析、经济模型。先找一篇同类型的实证论文,模仿着写,数据要改,图要重新画形势变一下,企业资料要换。
大学毕业季,很多同学都写不好论文。写不好论文,不仅影响成绩,也影响毕业。
所以,我在此分享一点经验给同学们。分析论文题目。
大家在选定一个论文题目之后,一定要分析论文题目的写作重点,分清主次。收集材料,写读书笔记。
当大家分析过论文的主要写作方向后,大家要开始收集与论文相关的论文材料。把自己找到与所选论文相关的材料记到读书笔记上,以备将来写论文的时候作为参考。
国内外研究现状。大家要将论文中的主要研究目的找出来。
然后寻找分析国内外对此题目的分析与研究。列举大纲。
结合论文题目。开始列举大纲。
先解释论文中相关的知识点。然后写当前的研究现状,接着写某题目的问题与不足,再写针对该问题的对策。
注意,问题和对策要相对应。论文中要列举事例、添加数据、分析的图片等等。
开始写论文。按照大纲开始写论文,但是要在必要的地方加上过渡段。
然后是论文的脚注,引用、参考资料、结论等。最后,大家把排版做好。
未尽事宜,请大家斧正。祝大家把论文写得更优秀。
特别需要注意: 注意,问题和对策要相对应。必要的地方加上过渡段 在经济学论文中,经常会出现实证分析,那么什么是实证分析呢?实证分析也可称为经验分析,目的在于用事实来支持论文所提出的观点或证明某一种理论,具体包括两种分析方法,一是统计分析,其中案例分析是其中的特例(样本只有一个),二是回归分析。
那么毕业论文撰写实证分析都有哪些呢?对于某一种的观点,只要举出一个例子来证实就可以了(暂时可以被接受),而如果验证的结果是事实与理论不符,应分析其可能的原因:①事实与理论不对应,该理论本来就不是解释这种现象的;②理论不正确,只要一个反例就可否定一个理论(用事实来证伪),没有反例的理论被认为是暂时可以接受的假说;③理论提出的背景与我国当前的现实不一致,要分析不一致的地方,然后改进理论,或提出改变现实的政策建议。与理论分析相比,实证分析应成为写作、选题的重点。
因为理论创新很难,而实证分析则可以且能够体现论文写作过程中付出的工作量,使论文可较易通过。毕业论文(尤其是学士、硕士毕业论文)应以实证分析为主,实证分析的内容可包括:إ1、案例的调查、分析,可包括:具有一定创新意义的案例分析,如果该案例可以否定一个理论,或者说明这个理论在某个领域不适用;具有现实意义的社会调查,如当前有关“三农”问题的调查;在一个新的领域内做的调查,别人没有做过或很少做过,如结合自身情况对大学生借贷状况进行的调查。
إ2、发现一个证据,可以证明别人已经提出的但尚未被人证明过的理论,如林毅夫(2000,p.261~295)的文章“食物的供应量、食物获取权与中国1959~1961年的饥荒”,是第一篇用计量经济学方法检验1998年诺贝尔经济学奖获得者Sen的理论(“食物获取权的被剥夺是饥荒发生的最根本原因”)的论文,属于实证分析中的创新。3、用大样本的数据来验证一种理论,或用一种新的方法验证一种理论或观点,虽然他人曾经用过同样的数据,但自己使用的数据更多、周期更长(如利用每年都在增长的股市数据)、论证更有效率(证明更简短)、更有说服力(如使用计量经济学的最新成果来证明),则具有一定的创新价值。
إ4、进行历史分析或比较分析,收集的资料比别人全,或发现新的证据、能够提出新的观点,或有第一手的资料(如直接翻译的外文或自身调查得来的资料),这样的实证分析往往会成为论文中的出彩点。إ5、研究结论及政策含义。
这是论文中所占比例最少的部分,大约占论文整体的5%。研究结论是论文各部分得出结论的总结,政策含义(建议)则是根据结论自然延伸、推导出来的,后面不需要再解释原因。
因而,各条研究结论、政策含义可能只需要一句话。إ6、论文写作中其他应注意的问题。
论文的写作是建立在他人已有研究基础上的,肯定涉及他人的观点、资料(包括外文资料),但引用时均应注明出处,切忌抄袭;论文不要写成说明材料或教科书,而应有自己的观点,因为论文是给导师以及这个领域内的专家看的;也不要将论文写成领导报告或政策建议,论文的重点在于其创新之处。 主题部分,是综述的主体,其写法多样,没有固定的格式。
可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。总结部分,与研究性论文的小结有些类。
4.如何报告回归分析的结果
回归分析的结果可以分为以下几部分:1)回归模型;2)回归系数;3)因变量和自变量的特征;4)自变量之间的关系。
其中,1和2是必须详细报告的基本信息;而3和4则可以根据具体情况而详略各异的辅助信息。以下分别讨论之。
如何描述回归模型和回归系数 先简单讲一下一元回归。一元回归,即只涉及一个自变量(如X)。
这种模型在社会科学中既很少见(一个常见的例外是时间序列分析中以时间为自变量分析因变量的长期趋势),也很容易报告。一般不需用表格,只须写一句话(如“自变量X的b = ?,std = ?, Beta = ?”)或给一个公式(如“Y = ? + ?b, where std = ?, Beta = ?”)就足够了。
如果一项研究中有多个一元回归分析,那么就应该也可以用一个表格来报告(参加?),以便于读者对各模型之间作比较。 接下来专门讲多元回归。
由于其涉及诸多参数,有的必须报告、有的酌情而定、有完全不必,为了便于说明,我按SPSS回归分析的输出结果(其它统计软件大同小异),做了一个如何报告回归模型和回归系数的一览表(表一)。如表所示,我将各种参数分成“必须报告”、“建议报告”、“一般不必”和“完全不必”四类。
我的分类标准来自于公认的假设检验所涉及的四个方面,即变量之间关系的显著性、强度、方向和形式(详见“解释变量关系时必须考虑的四个问题”一文)。也就是说,每个参数的取舍,应该而且可以由其是否提供了不重复的显著性(即Sig)、强度(B或Beta的值)、方向(B或Beta的符号)和形式(自变量的转换)信息而定的。
5.请问t检验,卡方检验,方差分析,回归分析,因子分析哪个比较简单
其实,负责任要回答你这个问题的话,我会说:正因为你没学过统计,可以谅解和理解。
你的问题是“分析某东西的需求影响因素”,说明你要分析的对象至少有2部分,一部分是原因,一部分是结果。结果就是“某东西的需求”,原因就是“影响因素”。
那么,用回归分析是最适用的,难度也适中。
回归分析建模之前,首先要分析“影响因素”和“某东西的需求”之间的相关关系,看看是哪种相关,然后通过业务经验,再进行相应的回归模型建模。你写的时候逻辑上比较容易梳理思路,别人阅读起来也容易看懂你的思路。
而t检验,卡方检验,方差分析,也可以分析“影响因素”和“某东西的需求”之间的相关关系,但如果没有实际业务经验解释的话,是很难说明白他们之间存在因果关系,论文就不完整;并且,这些方法适用于销售试验,也就是你可以控制环境因素的场景,但是对于你无法控制的场景,例如研究某类市场的产品的自然销售,则很容易说不清楚甚至用不上。
因子分析嘛,比较少用到“因果关系”或“相关关系”的研究,一般是用在降维上。
转载请注明出处众文网 » 本科毕业论文回归分析怎么写(本科论文的数据分析怎么做)